Cargando…
Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem
BACKGROUND: Automated segmentation of anatomical structures is a crucial step in image analysis. For lung segmentation in computed tomography, a variety of approaches exists, involving sophisticated pipelines trained and validated on different datasets. However, the clinical applicability of these a...
Autores principales: | Hofmanninger, Johannes, Prayer, Forian, Pan, Jeanny, Röhrich, Sebastian, Prosch, Helmut, Langs, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438418/ https://www.ncbi.nlm.nih.gov/pubmed/32814998 http://dx.doi.org/10.1186/s41747-020-00173-2 |
Ejemplares similares
-
Machine learning: from radiomics to discovery and routine
por: Langs, G., et al.
Publicado: (2018) -
Correction to: Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Unsupervised machine learning identifies predictive progression markers of IPF
por: Pan, Jeanny, et al.
Publicado: (2022) -
Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography
por: Röhrich, Sebastian, et al.
Publicado: (2020)