Cargando…

High genetic burden of type 2 diabetes can promote the high prevalence of disease: a longitudinal cohort study in Iran

Type 2 diabetes (T2D) is emerging as one of the serious public health issues in both developed and developing counties. Here, we surveyed the worldwide population differentiation in T2D-associated variants and assessed the genetic burden of the disease in an ongoing Tehran Cardio-Metabolic Genetic S...

Descripción completa

Detalles Bibliográficos
Autores principales: Moazzam-Jazi, Maryam, Najd Hassan Bonab, Leila, Zahedi, Asiyeh Sadat, Daneshpour, Maryam S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438483/
https://www.ncbi.nlm.nih.gov/pubmed/32814780
http://dx.doi.org/10.1038/s41598-020-70725-4
Descripción
Sumario:Type 2 diabetes (T2D) is emerging as one of the serious public health issues in both developed and developing counties. Here, we surveyed the worldwide population differentiation in T2D-associated variants and assessed the genetic burden of the disease in an ongoing Tehran Cardio-Metabolic Genetic Study (TCGS) cohort represented the Iranian population. We found multiple SNPs that were significantly depleted or enriched in at least one of the five populations of 1,000 Genome Project (African, American, East Asian, European, and South Asian) as well as the Iranian population. Interestingly, TCF7L2, a well-known associated gene with T2D, harbors the highest number of enriched risk alleles almost in all populations except for East Asian, where this gene embraces the largest number of significantly depleted risk alleles. The polygenic risk score (PRS) of the enriched risk alleles was calculated for 1,867 diabetic and 2,855 non-diabetic participants in the TCGS cohort, interestingly demonstrating that the risk of developing T2D was almost two times higher in top PRS quintile compared with the lowest quintile after adjusting for other known risk factors.