Cargando…
Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images
OBJECTIVE: To obtain molecular information in slides directly from H&E staining slides, which apparently display morphological information, to show that some differences in molecular level have already encoded in morphology. METHODS: In this paper, we selected Ki-67-expression as the representat...
Autores principales: | Liu, Yiqing, Li, Xi, Zheng, Aiping, Zhu, Xihan, Liu, Shuting, Hu, Mengying, Luo, Qianjiang, Liao, Huina, Liu, Mubiao, He, Yonghong, Chen, Yupeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438787/ https://www.ncbi.nlm.nih.gov/pubmed/32903653 http://dx.doi.org/10.3389/fmolb.2020.00183 |
Ejemplares similares
-
Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN
por: Xu, Zidui, et al.
Publicado: (2020) -
Immunohistochemistry (IHC) staining of in-vitro cancer cell-generated tumoroids
por: Amereh, Meitham, et al.
Publicado: (2023) -
Automated Ki-67 Quantification of Immunohistochemical Staining Image of Human Nasopharyngeal Carcinoma Xenografts
por: Shi, Peng, et al.
Publicado: (2016) -
Generative Adversarial Domain Adaptation for Nucleus Quantification in Images of Tissue Immunohistochemically Stained for Ki-67
por: Zhang, Xuhong, et al.
Publicado: (2020) -
Application of p16/Ki-67 dual-staining cytology in cervical cancers
por: Yu, Li, et al.
Publicado: (2019)