Cargando…
Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling
Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this...
Autores principales: | Lee, Minji, Yoon, Jae-Geun, Lee, Seong-Whan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438792/ https://www.ncbi.nlm.nih.gov/pubmed/32903663 http://dx.doi.org/10.3389/fnhum.2020.00321 |
Ejemplares similares
-
Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance
por: Kang, Jae-Hwan, et al.
Publicado: (2021) -
Causal Shannon–Fisher Characterization of Motor/Imagery Movements in EEG
por: Baravalle, Román, et al.
Publicado: (2018) -
Resting-State EEG in Alpha Rhythm May Be Indicative of the Performance of Motor Imagery-Based Brain–Computer Interface
por: Wang, Kun, et al.
Publicado: (2022) -
Dynamic causal modelling of fluctuating connectivity in resting-state EEG
por: Van de Steen, Frederik, et al.
Publicado: (2019) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012)