Cargando…
Detecting Conditional Dependence Using Flexible Bayesian Latent Class Analysis
A fundamental assumption underlying latent class analysis (LCA) is that class indicators are conditionally independent of each other, given latent class membership. Bayesian LCA enables researchers to detect and accommodate violations of this assumption by estimating any number of correlations among...
Autores principales: | Lee, Jaehoon, Jung, Kwanghee, Park, Jungkyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438797/ https://www.ncbi.nlm.nih.gov/pubmed/32903609 http://dx.doi.org/10.3389/fpsyg.2020.01987 |
Ejemplares similares
-
Automated Bot Detection Using Bayesian Latent Class Models in Online Surveys
por: Roman, Zachary Joseph, et al.
Publicado: (2022) -
A Latent Class Analysis of Suicidal Behaviors in Adolescents
por: Lee, Jong-Sun, et al.
Publicado: (2023) -
Multimethod latent class analysis
por: Nussbeck, Fridtjof W., et al.
Publicado: (2015) -
Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
por: Jung, Kwanghee, et al.
Publicado: (2019) -
A Comparative Study on the Performance of GSCA and CSA in Parameter Recovery for Structural Equation Models With Ordinal Observed Variables
por: Jung, Kwanghee, et al.
Publicado: (2018)