Cargando…
A Fault Diagnosis Approach for Rolling Bearing Integrated SGMD, IMSDE and Multiclass Relevance Vector Machine
The vibration signal induced by bearing local fault has strong nonstationary and nonlinear property, which indicates that the conventional methods are difficult to recognize bearing fault patterns effectively. Hence, to obtain an efficient diagnosis result, the paper proposes an intelligent fault di...
Autores principales: | Yan, Xiaoan, Liu, Ying, Jia, Minping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439119/ https://www.ncbi.nlm.nih.gov/pubmed/32759788 http://dx.doi.org/10.3390/s20154352 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine
por: Chen, Yinsheng, et al.
Publicado: (2019) -
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
Adaptive Multiclass Mahalanobis Taguchi System for Bearing Fault Diagnosis under Variable Conditions
por: Wang, Ning, et al.
Publicado: (2018)