Cargando…
Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling
In this research, the photoplethysmogram (PPG) waveform analysis is utilized to develop a logistic regression-based predictive model for the classification of diabetes. The classifier has three predictors age, b/a, and SP indices in which they achieved an overall accuracy of 92.3% in the prediction...
Autores principales: | Qawqzeh, Yousef K., Bajahzar, Abdullah S., Jemmali, Mahdi, Otoom, Mohammad Mahmood, Thaljaoui, Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439205/ https://www.ncbi.nlm.nih.gov/pubmed/32851065 http://dx.doi.org/10.1155/2020/3764653 |
Ejemplares similares
-
PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms
por: Ibtehaz, Nabil, et al.
Publicado: (2022) -
Analysis on Four Derivative Waveforms of Photoplethysmogram (PPG) for Fiducial Point Detection
por: Suboh, Mohd Zubir, et al.
Publicado: (2022) -
Heart-rate tuned comb filters for processing photoplethysmogram (PPG) signals in pulse oximetry
por: Alkhoury, Ludvik, et al.
Publicado: (2020) -
Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms
por: Elgendi, Mohamed, et al.
Publicado: (2018) -
A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals
por: Mahmud, Sakib, et al.
Publicado: (2022)