Cargando…

Hybrid Ni–Boron Nitride Nanotube Magnetic Semiconductor—A New Material for Spintronics

[Image: see text] Here, we report the presence of ferromagnetism in hybrid nickel–boron nitride nanotubes (BNNTs) with an ordered structure, synthesized by chemical vapor deposition using elemental boron, nickel oxide as the catalyst, and ammonia gas as the source for nitrogen. In previous studies,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenin, Adithya, Arumugam, Pandurangan, Shanmugham, Revathi, Sonachalam, Arumugam, Paramasivam, Sivaprakash, Rao, Aruna Prakasa, Singaravelu, Ganesan, Venkatesan, Ramani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439259/
https://www.ncbi.nlm.nih.gov/pubmed/32832755
http://dx.doi.org/10.1021/acsomega.0c01408
Descripción
Sumario:[Image: see text] Here, we report the presence of ferromagnetism in hybrid nickel–boron nitride nanotubes (BNNTs) with an ordered structure, synthesized by chemical vapor deposition using elemental boron, nickel oxide as the catalyst, and ammonia gas as the source for nitrogen. In previous studies, the nanotubes were synthesized with two metal oxide catalysts, whereas here, only a single catalyst was used. The nanotube’s structure was determined by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Purity of the nanotubes synthesized at 1150 °C was exceptional and this was determined by Raman spectroscopy. The average diameter of the nanotubes was 63 nm. Based on the magnetic studies carried out, it can be confirmed that the synthesized hybrid material is ferromagnetic at room temperature. Cyclic voltammetry was carried out to confirm the dielectric nature of the nanotubes. These materials could pave ways to nanoscale devices. The well-known thermal stability of BNNTs would play a vital role in preventing thermal failures in such small-scale devices where overheating is a major concern. The presence of semiconducting and magnetic properties in a single material could be confirmed, which might be highly significant in the field of spintronics.