Cargando…

Application of Dielectric Thermal Analysis to Screen Electrical Insulation Candidates for High-Voltage Electric Machines

[Image: see text] Dielectric analysis (DEA) is a thermal analysis technique primarily developed to optimize polymer cure profiles in manufacturing facilities to reduce scrap and to diagnose insulation. The recent implementation of this technique to characterize the behavior of new in-house electrica...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Tiffany S., Hammoud, Ahmad, Kelly, Marisabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439268/
https://www.ncbi.nlm.nih.gov/pubmed/32832754
http://dx.doi.org/10.1021/acsomega.0c01359
Descripción
Sumario:[Image: see text] Dielectric analysis (DEA) is a thermal analysis technique primarily developed to optimize polymer cure profiles in manufacturing facilities to reduce scrap and to diagnose insulation. The recent implementation of this technique to characterize the behavior of new in-house electrical insulation formulations has been advantageous in providing a better understanding of insulation exposed to thermal and electrical stresses at their anticipated operating temperatures and frequencies. Because the dielectric properties of in-house high-voltage insulation formulations are not well understood, DEA was initially carried out using a well-established commercially available polyimide film. This report documents the findings from using dielectric thermal analysis to characterize the electrical properties of commercially available polyimide films and in-house polyimide composite formulations that were exposed to environments anticipated in high-voltage electric motors. The effects of moisture content and thermal aging on the dielectric properties of commercial polyimide are also reported. Information presented in this paper illustrates that DEA can be used as a viable technique to screen candidates for new electrical insulation.