Cargando…
Voltage-induced ferromagnetism in a diamagnet
Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagne...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439324/ https://www.ncbi.nlm.nih.gov/pubmed/32832693 http://dx.doi.org/10.1126/sciadv.abb7721 |
Sumario: | Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.g., antiferromagnetic. Here, we demonstrate that ferromagnetism can be voltage-induced even from a diamagnetic (zero-spin) state suggesting that useful magnetic phases could be electrically induced in “nonmagnetic” materials. We use ionic liquid–gated diamagnetic FeS(2) as a model system, showing that as little as 1 V induces a reversible insulator-metal transition by electrostatic surface inversion. Anomalous Hall measurements then reveal electrically tunable surface ferromagnetism at up to 25 K. Density functional theory–based modeling explains this in terms of Stoner ferromagnetism induced via filling of a narrow e(g) band. |
---|