Cargando…
Interactive Regulation of Formate Dehydrogenase during CO(2) Fixation in Gas-Fermenting Bacteria
Protein lysine acetylation, a prevalent posttranslational modification, regulates numerous crucial biological processes in cells. Nevertheless, how lysine acetylation interacts with other types of regulation to coordinate metabolism remains largely unknown owing to the complexity of the process. Her...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439476/ https://www.ncbi.nlm.nih.gov/pubmed/32817100 http://dx.doi.org/10.1128/mBio.00650-20 |
Sumario: | Protein lysine acetylation, a prevalent posttranslational modification, regulates numerous crucial biological processes in cells. Nevertheless, how lysine acetylation interacts with other types of regulation to coordinate metabolism remains largely unknown owing to the complexity of the process. Here, using a representative gas-fermenting bacterium, Clostridium ljungdahlii, we revealed a novel regulatory mechanism that employs both the lysine acetylation and transcriptional regulation systems to interactively control CO(2) fixation, a key biological process for utilizing this one-carbon gas. A dominant lysine acetyltransferase/deacetylase system, At2/Dat1, was identified and found to regulate FDH1 (formate dehydrogenase responsible for CO(2) fixation) activity via a crucial acetylation site (lysine-29). Notably, the global transcription factor CcpA was also shown to be regulated by At2/Dat1; in turn, CcpA could directly control At2 expression, thus indicating an unreported interaction mode between the acetylation system and transcription factors. Moreover, CcpA was observed to negatively regulate FDH1 expression, which, when combined with At2/Dat1, leads to the collaborative regulation of this enzyme. Based on this concept, we reconstructed the regulatory network related to FDH1, realizing significantly increased CO(2) utilization by C. ljungdahlii. |
---|