Cargando…
Nutrient ratios in marine particulate organic matter are predicted by the population structure of well-adapted phytoplankton
A common assumption of a constant nitrogen-to-phosphorus ratio (N:P) of 16:1 in marine particulate organic matter (POM) appears to be invalidated by observations of major spatial variations in N:P. Two main explanations have been proposed. The first attributes the N:P variability to changes in the c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439515/ https://www.ncbi.nlm.nih.gov/pubmed/32832612 http://dx.doi.org/10.1126/sciadv.aaw9371 |
Sumario: | A common assumption of a constant nitrogen-to-phosphorus ratio (N:P) of 16:1 in marine particulate organic matter (POM) appears to be invalidated by observations of major spatial variations in N:P. Two main explanations have been proposed. The first attributes the N:P variability to changes in the community composition of well-adapted phytoplankton. The second proposes that variability arises from physiological acclimation involving intracellular adjustments of nutrient allocation under nutrient deficiency. Using a model of phytoplankton physiology, observational datasets, and a review of laboratory culture results, we assess the mechanistic basis of N:P variability. We find that the taxonomic composition of well-adapted phytoplankton best explains observed variations in POM N:P. Furthermore, we show that acclimation to nutrient deficiency may be safely neglected when considering the effects of ecology on POM N:P. These findings provide insight into the controls on global variability in POM composition and average phytoplankton physiological performance in the oceans. |
---|