Cargando…
Automated quantification of myocardial tissue characteristics from native T(1) mapping using neural networks with uncertainty-based quality-control
BACKGROUND: Tissue characterisation with cardiovascular magnetic resonance (CMR) parametric mapping has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by late gadolinium enhancement. Native T(1) mapping in particular has shown promise a...
Autores principales: | Puyol-Antón, Esther, Ruijsink, Bram, Baumgartner, Christian F., Masci, Pier-Giorgio, Sinclair, Matthew, Konukoglu, Ender, Razavi, Reza, King, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439533/ https://www.ncbi.nlm.nih.gov/pubmed/32814579 http://dx.doi.org/10.1186/s12968-020-00650-y |
Ejemplares similares
-
Deep Learning for Classification and Selection of Cine CMR Images to Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report
por: Vergani, Vittoria, et al.
Publicado: (2021) -
Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function
por: Ruijsink, Bram, et al.
Publicado: (2019) -
Aortic Distensibility Measured by Automated Analysis of Magnetic Resonance Imaging Predicts Adverse Cardiovascular Events in UK Biobank
por: Cecelja, Marina, et al.
Publicado: (2022) -
The Role of AI in Characterizing the DCM Phenotype
por: Asher, Clint, et al.
Publicado: (2021) -
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
por: Mariscal-Harana, Jorge, et al.
Publicado: (2023)