Cargando…
Exploiting mutual information for the imputation of static and dynamic mixed-type clinical data with an adaptive k-nearest neighbours approach
BACKGROUND: Clinical registers constitute an invaluable resource in the medical data-driven decision making context. Accurate machine learning and data mining approaches on these data can lead to faster diagnosis, definition of tailored interventions, and improved outcome prediction. A typical issue...
Autores principales: | Tavazzi, Erica, Daberdaku, Sebastian, Vasta, Rosario, Calvo, Andrea, Chiò, Adriano, Di Camillo, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439551/ https://www.ncbi.nlm.nih.gov/pubmed/32819346 http://dx.doi.org/10.1186/s12911-020-01166-2 |
Ejemplares similares
-
Efficient technique of microarray missing data imputation using clustering and weighted nearest neighbour
por: Dubey, Aditya, et al.
Publicado: (2021) -
An Occupancy Mapping Method Based on K-Nearest Neighbours
por: Miao, Yu, et al.
Publicado: (2021) -
Quantum and Quantum-Inspired Stereographic K Nearest-Neighbour Clustering
por: Viladomat Jasso, Alonso, et al.
Publicado: (2023) -
Genome scans for selection and introgression based on k‐nearest neighbour techniques
por: Pfeifer, Bastian, et al.
Publicado: (2020) -
Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression
por: Tavazzi, Erica, et al.
Publicado: (2022)