Cargando…
Deep learning–based cell composition analysis from tissue expression profiles
We present Scaden, a deep neural network for cell deconvolution that uses gene expression information to infer the cellular composition of tissues. Scaden is trained on single-cell RNA sequencing (RNA-seq) data to engineer discriminative features that confer robustness to bias and noise, making comp...
Autores principales: | Menden, Kevin, Marouf, Mohamed, Oller, Sergio, Dalmia, Anupriya, Magruder, Daniel Sumner, Kloiber, Karin, Heutink, Peter, Bonn, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439569/ https://www.ncbi.nlm.nih.gov/pubmed/32832661 http://dx.doi.org/10.1126/sciadv.aba2619 |
Ejemplares similares
-
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
por: Marouf, Mohamed, et al.
Publicado: (2020) -
Bias-invariant RNA-sequencing metadata annotation
por: Wartmann, Hannes, et al.
Publicado: (2021) -
Explainable Deep Learning for Augmentation of Small RNA Expression Profiles
por: Fiosina, Jelena, et al.
Publicado: (2020) -
DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state detection
por: Hausmann, Fabian, et al.
Publicado: (2023) -
Oasis 2: improved online analysis of small RNA-seq data
por: Rahman, Raza-Ur, et al.
Publicado: (2018)