Cargando…
Content-based features predict social media influence operations
We study how easy it is to distinguish influence operations from organic social media activity by assessing the performance of a platform-agnostic machine learning approach. Our method uses public activity to detect content that is part of coordinated influence operations based on human-interpretabl...
Autores principales: | Alizadeh, Meysam, Shapiro, Jacob N., Buntain, Cody, Tucker, Joshua A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439640/ https://www.ncbi.nlm.nih.gov/pubmed/32832674 http://dx.doi.org/10.1126/sciadv.abb5824 |
Ejemplares similares
-
Tokenization of social media engagements increases the sharing of false (and other) news but penalization moderates it
por: Alizadeh, Meysam, et al.
Publicado: (2023) -
Domestic violence risk prediction in Iran using a machine learning approach by analyzing Persian textual content in social media
por: Salehi, Meysam, et al.
Publicado: (2023) -
Market prediction using machine learning based on social media specific features
por: Sekioka, Satoshi, et al.
Publicado: (2023) -
Characterizing Media Content and Effects of Organ Donation on a Social Media Platform: Content Analysis
por: Jiang, Xiaoya, et al.
Publicado: (2019) -
Emotional content and sharing on Facebook: A theory cage match
por: Paletz, Susannah B. F., et al.
Publicado: (2023)