Cargando…
Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings
BACKGROUND: Despite the vagueness and uncertainty that is intrinsic in any medical act, interpretation and decision (including acts of data reporting and representation of relevant medical conditions), still little research has focused on how to explicitly take this uncertainty into account. In this...
Autores principales: | Seveso, Andrea, Campagner, Andrea, Ciucci, Davide, Cabitza, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439656/ https://www.ncbi.nlm.nih.gov/pubmed/32819345 http://dx.doi.org/10.1186/s12911-020-01152-8 |
Ejemplares similares
-
Three-Way Decision for Handling Uncertainty in Machine Learning: A Narrative Review
por: Campagner, Andrea, et al.
Publicado: (2020) -
External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
por: Campagner, Andrea, et al.
Publicado: (2021) -
Feature Reduction in Superset Learning Using Rough Sets and Evidence Theory
por: Campagner, Andrea, et al.
Publicado: (2020) -
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study
por: Brinati, Davide, et al.
Publicado: (2020) -
A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
por: Famiglini, Lorenzo, et al.
Publicado: (2022)