Cargando…

Relational Differential Dynamic Logic

In the field of quality assurance of hybrid systems, Platzer’s differential dynamic logic (dL) is widely recognized as a deductive verification method with solid mathematical foundations and sophisticated tool support. Motivated by case studies provided by our industry partner, we study a relational...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolčák, Juraj, Dubut, Jérémy, Hasuo, Ichiro, Katsumata, Shin-ya, Sprunger, David, Yamada, Akihisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439732/
http://dx.doi.org/10.1007/978-3-030-45190-5_11
Descripción
Sumario:In the field of quality assurance of hybrid systems, Platzer’s differential dynamic logic (dL) is widely recognized as a deductive verification method with solid mathematical foundations and sophisticated tool support. Motivated by case studies provided by our industry partner, we study a relational extension of dL, aiming to formally prove statements such as “an earlier engagement of the emergency brake yields a smaller collision speed.” A main technical challenge is to combine two dynamics, so that the powerful inference rules of dL (such as the differential invariant rules) can be applied to such relational reasoning, yet in such a way that we relate two different time points. Our contributions are a semantical theory of time stretching, and the resulting synchronization rule that expresses time stretching by the syntactic operation of Lie derivative. We implemented this rule as an extension of KeYmaera X, by which we successfully verified relational properties of a few models taken from the automotive domain.