Cargando…
Good-for-MDPs Automata for Probabilistic Analysis and Reinforcement Learning
We characterize the class of nondeterministic [Formula: see text]-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata ‘good-for-MDPs’ (GFM). We show that GFM automata are closed under classic simulation as well as under more powerful simulati...
Autores principales: | Hahn, Ernst Moritz, Perez, Mateo, Schewe, Sven, Somenzi, Fabio, Trivedi, Ashutosh, Wojtczak, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439745/ http://dx.doi.org/10.1007/978-3-030-45190-5_17 |
Ejemplares similares
-
Simple Strategies in Multi-Objective MDPs
por: Delgrange, Florent, et al.
Publicado: (2020) -
Scenario-Based Verification of Uncertain MDPs
por: Cubuktepe, Murat, et al.
Publicado: (2020) -
Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation
por: Ornik, Melkior, et al.
Publicado: (2021) -
PrIC3: Property Directed Reachability for MDPs
por: Batz, Kevin, et al.
Publicado: (2020) -
Ambiguity, Weakness, and Regularity in Probabilistic Büchi Automata
por: Löding, Christof, et al.
Publicado: (2020)