Cargando…
Image Denoising Using Sparsifying Transform Learning and Weighted Singular Values Minimization
In image denoising (IDN) processing, the low-rank property is usually considered as an important image prior. As a convex relaxation approximation of low rank, nuclear norm-based algorithms and their variants have attracted a significant attention. These algorithms can be collectively called image d...
Autores principales: | Zhao, Yanwei, Yang, Ping, Guan, Qiu, Zheng, Jianwei, Wang, Wanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439773/ https://www.ncbi.nlm.nih.gov/pubmed/32849865 http://dx.doi.org/10.1155/2020/8392032 |
Ejemplares similares
-
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation
por: Ma, Xiaodong, et al.
Publicado: (2020) -
Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
por: Yu, Yeyang, et al.
Publicado: (2014) -
Sparsifying priors for Bayesian uncertainty quantification in model discovery
por: Hirsh, Seth M., et al.
Publicado: (2022) -
Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source
por: Shi, Mengjie, et al.
Publicado: (2022)