Cargando…
DE-CNN: An Improved Identity Recognition Algorithm Based on the Emotional Electroencephalography
In the past few decades, identification recognition based on electroencephalography (EEG) has received extensive attention to resolve the security problems of conventional biometric systems. In the present study, a novel EEG-based identification system with different entropy and a continuous convolu...
Autores principales: | Wang, Yingdong, Wu, Qingfeng, Wang, Chen, Ruan, Qunsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439782/ https://www.ncbi.nlm.nih.gov/pubmed/32849910 http://dx.doi.org/10.1155/2020/7574531 |
Ejemplares similares
-
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
Electroencephalography Based Fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) Model for Emotion Recognition System
por: Kwon, Yea-Hoon, et al.
Publicado: (2018) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Cai, Jing, et al.
Publicado: (2021) -
CNN-Based Personal Identification System Using Resting State Electroencephalography
por: Fan, Yongdong, et al.
Publicado: (2021) -
EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels
por: Wang, Yuqi, et al.
Publicado: (2022)