Cargando…
TooManyCells identifies and visualizes relationships of single-cell clades
Identifying and visualizing transcriptionally similar cells is instrumental for accurate exploration of cellular diversity revealed by single-cell transcriptomics. However, widely used clustering and visualization algorithms produce a fixed number of cell clusters. A fixed clustering “resolution” ha...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439807/ https://www.ncbi.nlm.nih.gov/pubmed/32123397 http://dx.doi.org/10.1038/s41592-020-0748-5 |
Sumario: | Identifying and visualizing transcriptionally similar cells is instrumental for accurate exploration of cellular diversity revealed by single-cell transcriptomics. However, widely used clustering and visualization algorithms produce a fixed number of cell clusters. A fixed clustering “resolution” hampers our ability to identify and visualize echelons of cell states. We developed TooManyCells, a suite of graph-based algorithms for efficient and unbiased identification and visualization of cell clades. TooManyCells introduces a novel visualization model built on a concept intentionally orthogonal to dimensionality reduction methods. TooManyCells is also equipped with an efficient matrix-free divisive hierarchical spectral clustering wholly different from prevalent single-resolution clustering methods. Together, TooManyCells enables multi-resolution and multifaceted exploration of single-cell clades. An advantage of this paradigm is the immediate detection of rare and common populations that outperforms popular clustering and visualization algorithms as demonstrated using existing single-cell transcriptomic data sets and new data modeling drug resistance acquisition in leukemic T cells. |
---|