Cargando…

Molecular therapies delaying cardiovascular aging: disease- or health-oriented approaches

Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spont...

Descripción completa

Detalles Bibliográficos
Autores principales: Magenta, Alessandra, Lorde, Reggio, Syed, Sunayana Begum, Capogrossi, Maurizio C, Puca, Annibale, Madeddu, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439942/
https://www.ncbi.nlm.nih.gov/pubmed/32923974
http://dx.doi.org/10.1530/VB-19-0029
Descripción
Sumario:Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spontaneous capacity of repair, especially in organs like the heart that have very limited proliferative capacity, contributes in reducing the benefit of conventional therapy. ncRNAs are emerging as key epigenetic regulators of cardiovascular regeneration. Inhibition or replacement of miRNAs may offer reparative solutions to cardiovascular disease. The first part of this review article is devoted to illustrating novel therapies emerging from research on miRNAs. In the second part, we develop new therapeutic concepts emerging from genetics of longevity. Prolonged survival, as in supercentenarians, denotes an exceptional capacity to repair and cope with risk factors and diseases. These characteristics are shared with offspring, suggesting that the regenerative phenotype is heritable. New evidence indicates that genetic traits responsible for prolongation of health span in humans can be passed to and benefit the outcomes of animal models of cardiovascular disease. Genetic studies have also focused on determinants of accelerated senescence and related druggable targets. Evolutionary genetics assessing the genetic basis of adaptation and comparing successful and unsuccessful genetic changes in response to selection within populations represent a powerful basis to develop novel therapies aiming to prolong cardiovascular and whole organism health.