Cargando…

Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent

Staphylococcus aureus and other coagulase-positive Staphylococcus spp. bind the Fc region of IgG antibodies through expression of protein A (SpA). These species have consequently been a source of false-positive signals in antibody-based assays designed to detect other target bacteria. Here, flow cyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Cronin, Ultan P., Girardeaux, Laura, O’Meara, Elaine, Wilkinson, Martin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440785/
https://www.ncbi.nlm.nih.gov/pubmed/32591386
http://dx.doi.org/10.1128/AEM.01435-20
_version_ 1783573185364492288
author Cronin, Ultan P.
Girardeaux, Laura
O’Meara, Elaine
Wilkinson, Martin G.
author_facet Cronin, Ultan P.
Girardeaux, Laura
O’Meara, Elaine
Wilkinson, Martin G.
author_sort Cronin, Ultan P.
collection PubMed
description Staphylococcus aureus and other coagulase-positive Staphylococcus spp. bind the Fc region of IgG antibodies through expression of protein A (SpA). These species have consequently been a source of false-positive signals in antibody-based assays designed to detect other target bacteria. Here, flow cytometry was used to study the influence of a number of factors on the SpA-mediated binding of single cells to an anti-human IgG antibody, including strain, heat killing, overnight storage, growth phase, cell physiology, surface adhesion, and growth in model food systems. Through the costaining of antibody-stained cells with the permeability dye propidium iodide and calcein violet AM, the cell physiological status was related to SpA-mediated antibody binding. Generally, permeabilized cells lacking esterase activity did not strongly bind antibody. The binding of a number of commercially available polyclonal IgG antibodies to non-Staphylococcus spp. was also characterized. Not all SpA-expressing species showed strong binding of mouse IgG, and one species not known to express SpA showed strong binding. Most SpA-expressing strains bound rabbit IgG antibodies to some extent, whereas only one strain bound goat IgG. To reduce or eliminate SpA-mediated IgG binding, the following products were evaluated as blocking reagents and applied prior to staining with primary or secondary antibody: normal rabbit serum, mouse IgG isotype control, goat IgG, and a commercial FcR blocking reagent. Only the FcR blocking reagent consistently reduced SpA-mediated binding of Staphylococcus spp. to antibodies against other species and could be recommended as a blocking reagent in immunoassays designed to detect non-Staphylococcus species. IMPORTANCE This study characterizes a widespread but little-studied problem associated with the antibody-based detection of microbes—the Staphylococcus protein A (SpA)-mediated binding of IgG antibodies—and offers a solution: the use of commercial FcR blocking reagent. A common source of false-positive signals in the detection of microbes in clinical, food, or environmental samples can be eliminated by applying this study’s findings. Using flow cytometry, the authors demonstrate the extent of heterogeneity in a culture’s SpA-mediated binding of antibodies and that the degree of SpA-mediated antibody binding is strain, growth phase, and food matrix dependent and influenced by simulated food processing treatments and cell adherence. In addition, our studies of SpA-mediated binding of Staphylococcus spp. to antibodies against other bacterial species produced a very nuanced picture, leading us to recommend testing against multiple strains of S. aureus and S. hyicus of all antibodies to be incorporated into any immunoassay designed to detect a non-Staphylococcus spp.
format Online
Article
Text
id pubmed-7440785
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-74407852020-09-02 Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent Cronin, Ultan P. Girardeaux, Laura O’Meara, Elaine Wilkinson, Martin G. Appl Environ Microbiol Methods Staphylococcus aureus and other coagulase-positive Staphylococcus spp. bind the Fc region of IgG antibodies through expression of protein A (SpA). These species have consequently been a source of false-positive signals in antibody-based assays designed to detect other target bacteria. Here, flow cytometry was used to study the influence of a number of factors on the SpA-mediated binding of single cells to an anti-human IgG antibody, including strain, heat killing, overnight storage, growth phase, cell physiology, surface adhesion, and growth in model food systems. Through the costaining of antibody-stained cells with the permeability dye propidium iodide and calcein violet AM, the cell physiological status was related to SpA-mediated antibody binding. Generally, permeabilized cells lacking esterase activity did not strongly bind antibody. The binding of a number of commercially available polyclonal IgG antibodies to non-Staphylococcus spp. was also characterized. Not all SpA-expressing species showed strong binding of mouse IgG, and one species not known to express SpA showed strong binding. Most SpA-expressing strains bound rabbit IgG antibodies to some extent, whereas only one strain bound goat IgG. To reduce or eliminate SpA-mediated IgG binding, the following products were evaluated as blocking reagents and applied prior to staining with primary or secondary antibody: normal rabbit serum, mouse IgG isotype control, goat IgG, and a commercial FcR blocking reagent. Only the FcR blocking reagent consistently reduced SpA-mediated binding of Staphylococcus spp. to antibodies against other species and could be recommended as a blocking reagent in immunoassays designed to detect non-Staphylococcus species. IMPORTANCE This study characterizes a widespread but little-studied problem associated with the antibody-based detection of microbes—the Staphylococcus protein A (SpA)-mediated binding of IgG antibodies—and offers a solution: the use of commercial FcR blocking reagent. A common source of false-positive signals in the detection of microbes in clinical, food, or environmental samples can be eliminated by applying this study’s findings. Using flow cytometry, the authors demonstrate the extent of heterogeneity in a culture’s SpA-mediated binding of antibodies and that the degree of SpA-mediated antibody binding is strain, growth phase, and food matrix dependent and influenced by simulated food processing treatments and cell adherence. In addition, our studies of SpA-mediated binding of Staphylococcus spp. to antibodies against other bacterial species produced a very nuanced picture, leading us to recommend testing against multiple strains of S. aureus and S. hyicus of all antibodies to be incorporated into any immunoassay designed to detect a non-Staphylococcus spp. American Society for Microbiology 2020-08-18 /pmc/articles/PMC7440785/ /pubmed/32591386 http://dx.doi.org/10.1128/AEM.01435-20 Text en Copyright © 2020 Cronin et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods
Cronin, Ultan P.
Girardeaux, Laura
O’Meara, Elaine
Wilkinson, Martin G.
Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title_full Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title_fullStr Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title_full_unstemmed Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title_short Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent
title_sort protein a-mediated binding of staphylococcus spp. to antibodies in flow cytometric assays and reduction of this binding by using fc receptor blocking reagent
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440785/
https://www.ncbi.nlm.nih.gov/pubmed/32591386
http://dx.doi.org/10.1128/AEM.01435-20
work_keys_str_mv AT croninultanp proteinamediatedbindingofstaphylococcusspptoantibodiesinflowcytometricassaysandreductionofthisbindingbyusingfcreceptorblockingreagent
AT girardeauxlaura proteinamediatedbindingofstaphylococcusspptoantibodiesinflowcytometricassaysandreductionofthisbindingbyusingfcreceptorblockingreagent
AT omearaelaine proteinamediatedbindingofstaphylococcusspptoantibodiesinflowcytometricassaysandreductionofthisbindingbyusingfcreceptorblockingreagent
AT wilkinsonmarting proteinamediatedbindingofstaphylococcusspptoantibodiesinflowcytometricassaysandreductionofthisbindingbyusingfcreceptorblockingreagent