Cargando…
Entropy formula of N-body system
We prove a proposition that the entropy of the system composed of finite N molecules of ideal gas is the q-entropy or Havrda–Charvát–Tsallis entropy, which is also known as Tsallis entropy, with the entropic index [Formula: see text] in D-dimensional space. The indispensable infinity assumption used...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441065/ https://www.ncbi.nlm.nih.gov/pubmed/32820215 http://dx.doi.org/10.1038/s41598-020-71103-w |
_version_ | 1783573236539195392 |
---|---|
author | Shim, Jae Wan |
author_facet | Shim, Jae Wan |
author_sort | Shim, Jae Wan |
collection | PubMed |
description | We prove a proposition that the entropy of the system composed of finite N molecules of ideal gas is the q-entropy or Havrda–Charvát–Tsallis entropy, which is also known as Tsallis entropy, with the entropic index [Formula: see text] in D-dimensional space. The indispensable infinity assumption used by Boltzmann and others in their derivation of entropy formulae is not involved in our derivation, therefore our derived formula is exact. The analogy of the N-body system brings us to obtain the entropic index of a combined system [Formula: see text] formed from subsystems having different entropic indexes [Formula: see text] and [Formula: see text] as [Formula: see text] . It is possible to use the number N for the physical measure of deviation from Boltzmann entropy. |
format | Online Article Text |
id | pubmed-7441065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74410652020-08-21 Entropy formula of N-body system Shim, Jae Wan Sci Rep Article We prove a proposition that the entropy of the system composed of finite N molecules of ideal gas is the q-entropy or Havrda–Charvát–Tsallis entropy, which is also known as Tsallis entropy, with the entropic index [Formula: see text] in D-dimensional space. The indispensable infinity assumption used by Boltzmann and others in their derivation of entropy formulae is not involved in our derivation, therefore our derived formula is exact. The analogy of the N-body system brings us to obtain the entropic index of a combined system [Formula: see text] formed from subsystems having different entropic indexes [Formula: see text] and [Formula: see text] as [Formula: see text] . It is possible to use the number N for the physical measure of deviation from Boltzmann entropy. Nature Publishing Group UK 2020-08-20 /pmc/articles/PMC7441065/ /pubmed/32820215 http://dx.doi.org/10.1038/s41598-020-71103-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shim, Jae Wan Entropy formula of N-body system |
title | Entropy formula of N-body system |
title_full | Entropy formula of N-body system |
title_fullStr | Entropy formula of N-body system |
title_full_unstemmed | Entropy formula of N-body system |
title_short | Entropy formula of N-body system |
title_sort | entropy formula of n-body system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441065/ https://www.ncbi.nlm.nih.gov/pubmed/32820215 http://dx.doi.org/10.1038/s41598-020-71103-w |
work_keys_str_mv | AT shimjaewan entropyformulaofnbodysystem |