Cargando…
How machine learning can help select capping layers to suppress perovskite degradation
Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We...
Autores principales: | Hartono, Noor Titan Putri, Thapa, Janak, Tiihonen, Armi, Oviedo, Felipe, Batali, Clio, Yoo, Jason J., Liu, Zhe, Li, Ruipeng, Marrón, David Fuertes, Bawendi, Moungi G., Buonassisi, Tonio, Sun, Shijing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441172/ https://www.ncbi.nlm.nih.gov/pubmed/32820159 http://dx.doi.org/10.1038/s41467-020-17945-4 |
Ejemplares similares
-
Author Correction: How machine learning can help select capping layers to suppress perovskite degradation
por: Hartono, Noor Titan Putri, et al.
Publicado: (2020) -
Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning
por: Zhao, Yicheng, et al.
Publicado: (2021) -
Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset
por: Hartono, Noor Titan Putri, et al.
Publicado: (2023) -
High-Speed
Vapor Transport Deposition of Perovskite
Thin Films
por: Hoerantner, Maximilian T., et al.
Publicado: (2019) -
Environmental Stability of Crystals: A Greedy Screening
por: Twyman, Nicholas M., et al.
Publicado: (2022)