Cargando…
Upregulation of FOXO3 in New-Onset Type 1 Diabetes Mellitus
Forkhead box O (FOXO) transcription factors have been implicated in the development and differentiation of the immune cells. FOXO3 plays a crucial role in physiologic and pathologic immune response. FOXO3, cooperatively with FOXO1, control the development and function of Foxp3(+) regulatory T cells...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441418/ https://www.ncbi.nlm.nih.gov/pubmed/32851102 http://dx.doi.org/10.1155/2020/9484015 |
Sumario: | Forkhead box O (FOXO) transcription factors have been implicated in the development and differentiation of the immune cells. FOXO3 plays a crucial role in physiologic and pathologic immune response. FOXO3, cooperatively with FOXO1, control the development and function of Foxp3(+) regulatory T cells (T(reg)). Since the lack of T(reg)-mediated control has fundamental impact on type 1 diabetes mellitus (T1DM) development, we investigated FOXO3 expression in patients with T1DM. FOXO3 expression was estimated in peripheral blood mononuclear cells (PBMCs) from newly diagnosed T1DM pediatric patients (n = 28) and age-matched healthy donors (n = 27) by reahavel-time PCR and TaqMan gene expression assays. Expression analysis revealed significant upregulation of FOXO3 in T1DM (P = 0.0005). Stratification of the T1DM group according to the presence of initial diabetic ketoacidosis (DKA) did not indicate differences in FOXO3 expression in patients with DKA compared to a mild T1DM onset (P > 0.05). In conclusion, overexpression of FOXO3 is correlated with the ongoing islet autoimmune destruction and might suggest a potential role for this gene in the pathogenesis of type 1 diabetes mellitus. |
---|