Cargando…
A computational study of exact subgraph based SDP bounds for Max-Cut, stable set and coloring
The “exact subgraph” approach was recently introduced as a hierarchical scheme to get increasingly tight semidefinite programming relaxations of several NP-hard graph optimization problems. Solving these relaxations is a computational challenge because of the potentially large number of violated sub...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441529/ https://www.ncbi.nlm.nih.gov/pubmed/32863433 http://dx.doi.org/10.1007/s10107-020-01512-2 |
Sumario: | The “exact subgraph” approach was recently introduced as a hierarchical scheme to get increasingly tight semidefinite programming relaxations of several NP-hard graph optimization problems. Solving these relaxations is a computational challenge because of the potentially large number of violated subgraph constraints. We introduce a computational framework for these relaxations designed to cope with these difficulties. We suggest a partial Lagrangian dual, and exploit the fact that its evaluation decomposes into several independent subproblems. This opens the way to use the bundle method from non-smooth optimization to minimize the dual function. Finally computational experiments on the Max-Cut, stable set and coloring problem show the excellent quality of the bounds obtained with this approach. |
---|