Cargando…
Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation
Introduction : There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442502/ https://www.ncbi.nlm.nih.gov/pubmed/32823306 http://dx.doi.org/10.1055/s-0040-1702009 |
_version_ | 1783573468200042496 |
---|---|
author | Choudhary, Anirudh Tong, Li Zhu, Yuanda Wang, May D. |
author_facet | Choudhary, Anirudh Tong, Li Zhu, Yuanda Wang, May D. |
author_sort | Choudhary, Anirudh |
collection | PubMed |
description | Introduction : There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. Objective : In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. Methods : We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. Results : We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. Conclusion : DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data. |
format | Online Article Text |
id | pubmed-7442502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Georg Thieme Verlag KG |
record_format | MEDLINE/PubMed |
spelling | pubmed-74425022020-08-24 Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation Choudhary, Anirudh Tong, Li Zhu, Yuanda Wang, May D. Yearb Med Inform Introduction : There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. Objective : In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. Methods : We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. Results : We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. Conclusion : DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data. Georg Thieme Verlag KG 2020-08 2020-08-21 /pmc/articles/PMC7442502/ /pubmed/32823306 http://dx.doi.org/10.1055/s-0040-1702009 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited. |
spellingShingle | Choudhary, Anirudh Tong, Li Zhu, Yuanda Wang, May D. Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title | Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title_full | Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title_fullStr | Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title_full_unstemmed | Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title_short | Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation |
title_sort | advancing medical imaging informatics by deep learning-based domain adaptation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442502/ https://www.ncbi.nlm.nih.gov/pubmed/32823306 http://dx.doi.org/10.1055/s-0040-1702009 |
work_keys_str_mv | AT choudharyanirudh advancingmedicalimaginginformaticsbydeeplearningbaseddomainadaptation AT tongli advancingmedicalimaginginformaticsbydeeplearningbaseddomainadaptation AT zhuyuanda advancingmedicalimaginginformaticsbydeeplearningbaseddomainadaptation AT wangmayd advancingmedicalimaginginformaticsbydeeplearningbaseddomainadaptation |