Cargando…
Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation
Introduction : There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity...
Autores principales: | Choudhary, Anirudh, Tong, Li, Zhu, Yuanda, Wang, May D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442502/ https://www.ncbi.nlm.nih.gov/pubmed/32823306 http://dx.doi.org/10.1055/s-0040-1702009 |
Ejemplares similares
-
Deep learning and convolutional neural networks for medical imaging and clinical informatics
por: Lu, Le, et al.
Publicado: (2019) -
Deploying deep learning models on unseen medical imaging using adversarial domain adaptation
por: Valliani, Aly A., et al.
Publicado: (2022) -
Proposing Causal Sequence of Death by Neural Machine Translation in Public Health Informatics
por: Zhu, Yuanda, et al.
Publicado: (2022) -
Deep learning techniques for biomedical and health informatics
por: Agarwal, Basant, et al.
Publicado: (2020) -
Deep learning techniques for biomedical and health informatics
por: Dash, Sujata, et al.
Publicado: (2019)