Cargando…
Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator
BACKGROUND: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442577/ https://www.ncbi.nlm.nih.gov/pubmed/32927229 http://dx.doi.org/10.1016/j.ijmedinf.2020.104258 |
_version_ | 1783573484696240128 |
---|---|
author | Wollenstein-Betech, Salomón Cassandras, Christos G. Paschalidis, Ioannis Ch. |
author_facet | Wollenstein-Betech, Salomón Cassandras, Christos G. Paschalidis, Ioannis Ch. |
author_sort | Wollenstein-Betech, Salomón |
collection | PubMed |
description | BACKGROUND: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited medical resources and design targeted policies for vulnerable subgroups have come to the forefront. Specifically, under consideration are decisions on who to test, who to admit into hospitals, who to treat in an Intensive Care Unit (ICU), and who to support with a ventilator. Given today’s ability to gather, share, analyze and process data, personalized predictive models based on demographics and information regarding prior conditions can be used to (1) help decision-makers allocate limited resources, when needed, (2) advise individuals how to better protect themselves given their risk profile, (3) differentiate social distancing guidelines based on risk, and (4) prioritize vaccinations once a vaccine becomes available. OBJECTIVE: To develop personalized models that predict the following events: (1) hospitalization, (2) mortality, (3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is assumed that one has access to a patient’s basic preconditions, which can be easily gathered without the need to be at a hospital and hence serve citizens and policy makers to assess individual risk during a pandemic. For the remaining models, different versions developed include different sets of a patient’s features, with some including information on how the disease is progressing (e.g., diagnosis of pneumonia). MATERIALS AND METHODS: National data from a publicly available repository, updated daily, containing information from approximately 91,000 patients in Mexico were used. The data for each patient include demographics, prior medical conditions, SARS-CoV-2 test results, hospitalization, mortality and whether a patient has developed pneumonia or not. Several classification methods were applied and compared, including robust versions of logistic regression, and support vector machines, as well as random forests and gradient boosted decision trees. RESULTS: Interpretable methods (logistic regression and support vector machines) perform just as well as more complex models in terms of accuracy and detection rates, with the additional benefit of elucidating variables on which the predictions are based. Classification accuracies reached 72 %, 79 %, 89 %, and 90 % for predicting hospitalization, mortality, need for ICU and need for a ventilator, respectively. The analysis reveals the most important preconditions for making the predictions. For the four models derived, these are: (1) for hospitalization:age, pregnancy, diabetes, gender, chronic renal insufficiency, and immunosuppression; (2) for mortality: age, immunosuppression, chronic renal insufficiency, obesity and diabetes; (3) for ICU need: development of pneumonia (if available), age, obesity, diabetes and hypertension; and (4) for ventilator need: ICU and pneumonia (if available), age, obesity, and hypertension. |
format | Online Article Text |
id | pubmed-7442577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74425772020-08-24 Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator Wollenstein-Betech, Salomón Cassandras, Christos G. Paschalidis, Ioannis Ch. Int J Med Inform Article BACKGROUND: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited medical resources and design targeted policies for vulnerable subgroups have come to the forefront. Specifically, under consideration are decisions on who to test, who to admit into hospitals, who to treat in an Intensive Care Unit (ICU), and who to support with a ventilator. Given today’s ability to gather, share, analyze and process data, personalized predictive models based on demographics and information regarding prior conditions can be used to (1) help decision-makers allocate limited resources, when needed, (2) advise individuals how to better protect themselves given their risk profile, (3) differentiate social distancing guidelines based on risk, and (4) prioritize vaccinations once a vaccine becomes available. OBJECTIVE: To develop personalized models that predict the following events: (1) hospitalization, (2) mortality, (3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is assumed that one has access to a patient’s basic preconditions, which can be easily gathered without the need to be at a hospital and hence serve citizens and policy makers to assess individual risk during a pandemic. For the remaining models, different versions developed include different sets of a patient’s features, with some including information on how the disease is progressing (e.g., diagnosis of pneumonia). MATERIALS AND METHODS: National data from a publicly available repository, updated daily, containing information from approximately 91,000 patients in Mexico were used. The data for each patient include demographics, prior medical conditions, SARS-CoV-2 test results, hospitalization, mortality and whether a patient has developed pneumonia or not. Several classification methods were applied and compared, including robust versions of logistic regression, and support vector machines, as well as random forests and gradient boosted decision trees. RESULTS: Interpretable methods (logistic regression and support vector machines) perform just as well as more complex models in terms of accuracy and detection rates, with the additional benefit of elucidating variables on which the predictions are based. Classification accuracies reached 72 %, 79 %, 89 %, and 90 % for predicting hospitalization, mortality, need for ICU and need for a ventilator, respectively. The analysis reveals the most important preconditions for making the predictions. For the four models derived, these are: (1) for hospitalization:age, pregnancy, diabetes, gender, chronic renal insufficiency, and immunosuppression; (2) for mortality: age, immunosuppression, chronic renal insufficiency, obesity and diabetes; (3) for ICU need: development of pneumonia (if available), age, obesity, diabetes and hypertension; and (4) for ventilator need: ICU and pneumonia (if available), age, obesity, and hypertension. Elsevier B.V. 2020-10 2020-08-22 /pmc/articles/PMC7442577/ /pubmed/32927229 http://dx.doi.org/10.1016/j.ijmedinf.2020.104258 Text en © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Wollenstein-Betech, Salomón Cassandras, Christos G. Paschalidis, Ioannis Ch. Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title | Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title_full | Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title_fullStr | Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title_full_unstemmed | Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title_short | Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator |
title_sort | personalized predictive models for symptomatic covid-19 patients using basic preconditions: hospitalizations, mortality, and the need for an icu or ventilator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442577/ https://www.ncbi.nlm.nih.gov/pubmed/32927229 http://dx.doi.org/10.1016/j.ijmedinf.2020.104258 |
work_keys_str_mv | AT wollensteinbetechsalomon personalizedpredictivemodelsforsymptomaticcovid19patientsusingbasicpreconditionshospitalizationsmortalityandtheneedforanicuorventilator AT cassandraschristosg personalizedpredictivemodelsforsymptomaticcovid19patientsusingbasicpreconditionshospitalizationsmortalityandtheneedforanicuorventilator AT paschalidisioannisch personalizedpredictivemodelsforsymptomaticcovid19patientsusingbasicpreconditionshospitalizationsmortalityandtheneedforanicuorventilator |