Cargando…

Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function, and f...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Xuemei, Shi, Qiang, Wu, Peng, Zhang, Xiaoyu, Kambara, Hiroto, Su, Jiayu, Yu, Hongbo, Park, Shin-Young, Guo, Rongxia, Ren, Qian, Zhang, Sudong, Xu, Yuanfu, Silberstein, Leslie E., Cheng, Tao, Ma, Fengxia, Li, Cheng, Luo, Hongbo R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442692/
https://www.ncbi.nlm.nih.gov/pubmed/32719519
http://dx.doi.org/10.1038/s41590-020-0736-z
_version_ 1783573493617524736
author Xie, Xuemei
Shi, Qiang
Wu, Peng
Zhang, Xiaoyu
Kambara, Hiroto
Su, Jiayu
Yu, Hongbo
Park, Shin-Young
Guo, Rongxia
Ren, Qian
Zhang, Sudong
Xu, Yuanfu
Silberstein, Leslie E.
Cheng, Tao
Ma, Fengxia
Li, Cheng
Luo, Hongbo R.
author_facet Xie, Xuemei
Shi, Qiang
Wu, Peng
Zhang, Xiaoyu
Kambara, Hiroto
Su, Jiayu
Yu, Hongbo
Park, Shin-Young
Guo, Rongxia
Ren, Qian
Zhang, Sudong
Xu, Yuanfu
Silberstein, Leslie E.
Cheng, Tao
Ma, Fengxia
Li, Cheng
Luo, Hongbo R.
author_sort Xie, Xuemei
collection PubMed
description The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function, and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transition between each subpopulation, and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers, and therapeutic targets at single-cell resolution.
format Online
Article
Text
id pubmed-7442692
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-74426922021-01-27 Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection Xie, Xuemei Shi, Qiang Wu, Peng Zhang, Xiaoyu Kambara, Hiroto Su, Jiayu Yu, Hongbo Park, Shin-Young Guo, Rongxia Ren, Qian Zhang, Sudong Xu, Yuanfu Silberstein, Leslie E. Cheng, Tao Ma, Fengxia Li, Cheng Luo, Hongbo R. Nat Immunol Article The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function, and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transition between each subpopulation, and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers, and therapeutic targets at single-cell resolution. 2020-07-27 2020-09 /pmc/articles/PMC7442692/ /pubmed/32719519 http://dx.doi.org/10.1038/s41590-020-0736-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Xie, Xuemei
Shi, Qiang
Wu, Peng
Zhang, Xiaoyu
Kambara, Hiroto
Su, Jiayu
Yu, Hongbo
Park, Shin-Young
Guo, Rongxia
Ren, Qian
Zhang, Sudong
Xu, Yuanfu
Silberstein, Leslie E.
Cheng, Tao
Ma, Fengxia
Li, Cheng
Luo, Hongbo R.
Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title_full Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title_fullStr Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title_full_unstemmed Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title_short Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
title_sort single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442692/
https://www.ncbi.nlm.nih.gov/pubmed/32719519
http://dx.doi.org/10.1038/s41590-020-0736-z
work_keys_str_mv AT xiexuemei singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT shiqiang singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT wupeng singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT zhangxiaoyu singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT kambarahiroto singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT sujiayu singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT yuhongbo singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT parkshinyoung singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT guorongxia singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT renqian singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT zhangsudong singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT xuyuanfu singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT silbersteinlesliee singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT chengtao singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT mafengxia singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT licheng singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection
AT luohongbor singlecelltranscriptomeprofilingrevealsneutrophilheterogeneityinhomeostasisandinfection