Cargando…

Chiral discrimination by recollision enhanced femtosecond laser mass spectrometry

Chiral molecules and their interactions are critical in a variety of chemical and biological processes. Circular dichroism (CD) is the most widely used optical technique to study chirality, often performed in a solution phase. However, CD has low-efficiency on the order of 0.01–1[Formula: see text]...

Descripción completa

Detalles Bibliográficos
Autores principales: Bégin, Jean-Luc, Alsaawy, Maye, Bhardwaj, Ravi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442795/
https://www.ncbi.nlm.nih.gov/pubmed/32826912
http://dx.doi.org/10.1038/s41598-020-71069-9
Descripción
Sumario:Chiral molecules and their interactions are critical in a variety of chemical and biological processes. Circular dichroism (CD) is the most widely used optical technique to study chirality, often performed in a solution phase. However, CD has low-efficiency on the order of 0.01–1[Formula: see text] . Therefore, there is a growing need to develop high-efficiency chiroptical techniques, especially in gas-phase, to gain background-free in-depth insight into chiral interactions. By using mass spectrometry and strong-field ionization of limonene with elliptically polarized light, we demonstrate an efficient chiral discrimination method that produces a chiral signal of one to two orders of magnitude higher than the conventional CD. The chiral response exhibits a strong dependence on wavelength in the range of 1,300–2,400 nm, where the relative abundance of the ion yields alternates between the two enantiomers. The origin of enhanced enantio-sensitivity in intense laser fields is attributed to two mechanisms that rely on the recollision dynamics in a chiral system: (1) the excited ionic state dynamics mediated either by the laser field or by the recollision process, and (2) non-dipole effects that alter the electron’s trajectories. Our results can serve as a benchmark for testing and developing theoretical tools involving non-dipole effects in strong-field ionization of molecules.