Cargando…

CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses

As a key variance partitioning tool, linear mixed models (LMMs) using genome-based restricted maximum likelihood (GREML) allow both fixed and random effects. Classic LMMs assume independence between random effects, which can be violated, causing bias. Here we introduce a generalized GREML, named COR...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xuan, Im, Hae Kyung, Lee, S. Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442840/
https://www.ncbi.nlm.nih.gov/pubmed/32826890
http://dx.doi.org/10.1038/s41467-020-18085-5
Descripción
Sumario:As a key variance partitioning tool, linear mixed models (LMMs) using genome-based restricted maximum likelihood (GREML) allow both fixed and random effects. Classic LMMs assume independence between random effects, which can be violated, causing bias. Here we introduce a generalized GREML, named CORE GREML, that explicitly estimates the covariance between random effects. Using extensive simulations, we show that CORE GREML outperforms the conventional GREML, providing variance and covariance estimates free from bias due to correlated random effects. Applying CORE GREML to UK Biobank data, we find, for example, that the transcriptome, imputed using genotype data, explains a significant proportion of phenotypic variance for height (0.15, p-value = 1.5e-283), and that these transcriptomic effects correlate with the genomic effects (genome-transcriptome correlation = 0.35, p-value = 1.2e-14). We conclude that the covariance between random effects is a key parameter for estimation, especially when partitioning phenotypic variance by multi-omics layers.