Cargando…
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
As a key variance partitioning tool, linear mixed models (LMMs) using genome-based restricted maximum likelihood (GREML) allow both fixed and random effects. Classic LMMs assume independence between random effects, which can be violated, causing bias. Here we introduce a generalized GREML, named COR...
Autores principales: | Zhou, Xuan, Im, Hae Kyung, Lee, S. Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442840/ https://www.ncbi.nlm.nih.gov/pubmed/32826890 http://dx.doi.org/10.1038/s41467-020-18085-5 |
Ejemplares similares
-
Epigenome-wide contributions to individual differences in childhood phenotypes: a GREML approach
por: Neumann, Alexander, et al.
Publicado: (2022) -
Covariant differential complexes on quantum linear groups
por: Isaev, A P, et al.
Publicado: (1994) -
Bayesian imputation of time-varying covariates in linear mixed
models
por: Erler, Nicole S, et al.
Publicado: (2017) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998) -
Mixed‐type multivariate response regression with covariance estimation
por: Ekvall, Karl Oskar, et al.
Publicado: (2022)