Cargando…
Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone s...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443117/ https://www.ncbi.nlm.nih.gov/pubmed/32881472 http://dx.doi.org/10.1167/iovs.61.10.36 |
_version_ | 1783573570982510592 |
---|---|
author | Di Scipio, Matteo Tavares, Erika Deshmukh, Shriya Audo, Isabelle Green-Sanderson, Kit Zubak, Yuliya Zine-Eddine, Fayçal Pearson, Alexander Vig, Anjali Tang, Chen Yu Mollica, Antonio Karas, Jonathan Tumber, Anupreet Yu, Caberry W. Billingsley, Gail Wilson, Michael D. Zeitz, Christina Héon, Elise Vincent, Ajoy |
author_facet | Di Scipio, Matteo Tavares, Erika Deshmukh, Shriya Audo, Isabelle Green-Sanderson, Kit Zubak, Yuliya Zine-Eddine, Fayçal Pearson, Alexander Vig, Anjali Tang, Chen Yu Mollica, Antonio Karas, Jonathan Tumber, Anupreet Yu, Caberry W. Billingsley, Gail Wilson, Michael D. Zeitz, Christina Héon, Elise Vincent, Ajoy |
author_sort | Di Scipio, Matteo |
collection | PubMed |
description | PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. RESULTS: The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. CONCLUSIONS: Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants. |
format | Online Article Text |
id | pubmed-7443117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74431172020-09-01 Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization Di Scipio, Matteo Tavares, Erika Deshmukh, Shriya Audo, Isabelle Green-Sanderson, Kit Zubak, Yuliya Zine-Eddine, Fayçal Pearson, Alexander Vig, Anjali Tang, Chen Yu Mollica, Antonio Karas, Jonathan Tumber, Anupreet Yu, Caberry W. Billingsley, Gail Wilson, Michael D. Zeitz, Christina Héon, Elise Vincent, Ajoy Invest Ophthalmol Vis Sci Genetics PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. RESULTS: The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. CONCLUSIONS: Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants. The Association for Research in Vision and Ophthalmology 2020-08-20 /pmc/articles/PMC7443117/ /pubmed/32881472 http://dx.doi.org/10.1167/iovs.61.10.36 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Genetics Di Scipio, Matteo Tavares, Erika Deshmukh, Shriya Audo, Isabelle Green-Sanderson, Kit Zubak, Yuliya Zine-Eddine, Fayçal Pearson, Alexander Vig, Anjali Tang, Chen Yu Mollica, Antonio Karas, Jonathan Tumber, Anupreet Yu, Caberry W. Billingsley, Gail Wilson, Michael D. Zeitz, Christina Héon, Elise Vincent, Ajoy Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title | Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title_full | Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title_fullStr | Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title_full_unstemmed | Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title_short | Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization |
title_sort | phenotype driven analysis of whole genome sequencing identifies deep intronic variants that cause retinal dystrophies by aberrant exonization |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443117/ https://www.ncbi.nlm.nih.gov/pubmed/32881472 http://dx.doi.org/10.1167/iovs.61.10.36 |
work_keys_str_mv | AT discipiomatteo phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT tavareserika phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT deshmukhshriya phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT audoisabelle phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT greensandersonkit phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT zubakyuliya phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT zineeddinefaycal phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT pearsonalexander phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT viganjali phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT tangchenyu phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT mollicaantonio phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT karasjonathan phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT tumberanupreet phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT yucaberryw phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT billingsleygail phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT wilsonmichaeld phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT zeitzchristina phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT heonelise phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization AT vincentajoy phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization |