Cargando…

Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization

PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone s...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Scipio, Matteo, Tavares, Erika, Deshmukh, Shriya, Audo, Isabelle, Green-Sanderson, Kit, Zubak, Yuliya, Zine-Eddine, Fayçal, Pearson, Alexander, Vig, Anjali, Tang, Chen Yu, Mollica, Antonio, Karas, Jonathan, Tumber, Anupreet, Yu, Caberry W., Billingsley, Gail, Wilson, Michael D., Zeitz, Christina, Héon, Elise, Vincent, Ajoy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443117/
https://www.ncbi.nlm.nih.gov/pubmed/32881472
http://dx.doi.org/10.1167/iovs.61.10.36
_version_ 1783573570982510592
author Di Scipio, Matteo
Tavares, Erika
Deshmukh, Shriya
Audo, Isabelle
Green-Sanderson, Kit
Zubak, Yuliya
Zine-Eddine, Fayçal
Pearson, Alexander
Vig, Anjali
Tang, Chen Yu
Mollica, Antonio
Karas, Jonathan
Tumber, Anupreet
Yu, Caberry W.
Billingsley, Gail
Wilson, Michael D.
Zeitz, Christina
Héon, Elise
Vincent, Ajoy
author_facet Di Scipio, Matteo
Tavares, Erika
Deshmukh, Shriya
Audo, Isabelle
Green-Sanderson, Kit
Zubak, Yuliya
Zine-Eddine, Fayçal
Pearson, Alexander
Vig, Anjali
Tang, Chen Yu
Mollica, Antonio
Karas, Jonathan
Tumber, Anupreet
Yu, Caberry W.
Billingsley, Gail
Wilson, Michael D.
Zeitz, Christina
Héon, Elise
Vincent, Ajoy
author_sort Di Scipio, Matteo
collection PubMed
description PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. RESULTS: The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. CONCLUSIONS: Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
format Online
Article
Text
id pubmed-7443117
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-74431172020-09-01 Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization Di Scipio, Matteo Tavares, Erika Deshmukh, Shriya Audo, Isabelle Green-Sanderson, Kit Zubak, Yuliya Zine-Eddine, Fayçal Pearson, Alexander Vig, Anjali Tang, Chen Yu Mollica, Antonio Karas, Jonathan Tumber, Anupreet Yu, Caberry W. Billingsley, Gail Wilson, Michael D. Zeitz, Christina Héon, Elise Vincent, Ajoy Invest Ophthalmol Vis Sci Genetics PURPOSE: To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. METHODS: Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. RESULTS: The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. CONCLUSIONS: Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants. The Association for Research in Vision and Ophthalmology 2020-08-20 /pmc/articles/PMC7443117/ /pubmed/32881472 http://dx.doi.org/10.1167/iovs.61.10.36 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Genetics
Di Scipio, Matteo
Tavares, Erika
Deshmukh, Shriya
Audo, Isabelle
Green-Sanderson, Kit
Zubak, Yuliya
Zine-Eddine, Fayçal
Pearson, Alexander
Vig, Anjali
Tang, Chen Yu
Mollica, Antonio
Karas, Jonathan
Tumber, Anupreet
Yu, Caberry W.
Billingsley, Gail
Wilson, Michael D.
Zeitz, Christina
Héon, Elise
Vincent, Ajoy
Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title_full Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title_fullStr Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title_full_unstemmed Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title_short Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization
title_sort phenotype driven analysis of whole genome sequencing identifies deep intronic variants that cause retinal dystrophies by aberrant exonization
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443117/
https://www.ncbi.nlm.nih.gov/pubmed/32881472
http://dx.doi.org/10.1167/iovs.61.10.36
work_keys_str_mv AT discipiomatteo phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT tavareserika phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT deshmukhshriya phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT audoisabelle phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT greensandersonkit phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT zubakyuliya phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT zineeddinefaycal phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT pearsonalexander phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT viganjali phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT tangchenyu phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT mollicaantonio phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT karasjonathan phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT tumberanupreet phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT yucaberryw phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT billingsleygail phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT wilsonmichaeld phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT zeitzchristina phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT heonelise phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization
AT vincentajoy phenotypedrivenanalysisofwholegenomesequencingidentifiesdeepintronicvariantsthatcauseretinaldystrophiesbyaberrantexonization