Cargando…

Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients

PURPOSE: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. MET...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Tingjie, van Hest, Reinier M., Zwep, Laura B., Roggeveen, Luca F., Fleuren, Lucas M., Bosman, Rob J., van der Voort, Peter H. J., Girbes, Armand R. J., Mathot, Ron A. A., Elbers, Paul W. G., van Hasselt, Johan G. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443423/
https://www.ncbi.nlm.nih.gov/pubmed/32830297
http://dx.doi.org/10.1007/s11095-020-02908-7
_version_ 1783573632870514688
author Guo, Tingjie
van Hest, Reinier M.
Zwep, Laura B.
Roggeveen, Luca F.
Fleuren, Lucas M.
Bosman, Rob J.
van der Voort, Peter H. J.
Girbes, Armand R. J.
Mathot, Ron A. A.
Elbers, Paul W. G.
van Hasselt, Johan G. C.
author_facet Guo, Tingjie
van Hest, Reinier M.
Zwep, Laura B.
Roggeveen, Luca F.
Fleuren, Lucas M.
Bosman, Rob J.
van der Voort, Peter H. J.
Girbes, Armand R. J.
Mathot, Ron A. A.
Elbers, Paul W. G.
van Hasselt, Johan G. C.
author_sort Guo, Tingjie
collection PubMed
description PURPOSE: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. METHODS: We used a vancomycin TDM data set (n = 408 patients). We compared standard MAP-based Bayesian forecasting with two alternative approaches: (i) adaptive MAP which handles data over multiple iterations, and (ii) weighted MAP which weights the likelihood contribution of data. We evaluated the percentage error (PE) for seven scenarios including historical TDM data from the preceding day up to seven days. RESULTS: The mean of median PEs of all scenarios for the standard MAP, adaptive MAP and weighted MAP method were − 7.7%, −4.5% and − 6.7%. The adaptive MAP also showed the narrowest inter-quartile range of PE. In addition, regardless of MAP method, including historical TDM data further in the past will increase prediction errors. CONCLUSIONS: The proposed adaptive MAP method outperforms standard MAP in predictive performance and may be considered for improvement of model-based dose optimization. The inclusion of historical data beyond either one day (standard MAP and weighted MAP) or two days (adaptive MAP) reduces predictive performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11095-020-02908-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7443423
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-74434232020-08-31 Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients Guo, Tingjie van Hest, Reinier M. Zwep, Laura B. Roggeveen, Luca F. Fleuren, Lucas M. Bosman, Rob J. van der Voort, Peter H. J. Girbes, Armand R. J. Mathot, Ron A. A. Elbers, Paul W. G. van Hasselt, Johan G. C. Pharm Res Research Paper PURPOSE: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. METHODS: We used a vancomycin TDM data set (n = 408 patients). We compared standard MAP-based Bayesian forecasting with two alternative approaches: (i) adaptive MAP which handles data over multiple iterations, and (ii) weighted MAP which weights the likelihood contribution of data. We evaluated the percentage error (PE) for seven scenarios including historical TDM data from the preceding day up to seven days. RESULTS: The mean of median PEs of all scenarios for the standard MAP, adaptive MAP and weighted MAP method were − 7.7%, −4.5% and − 6.7%. The adaptive MAP also showed the narrowest inter-quartile range of PE. In addition, regardless of MAP method, including historical TDM data further in the past will increase prediction errors. CONCLUSIONS: The proposed adaptive MAP method outperforms standard MAP in predictive performance and may be considered for improvement of model-based dose optimization. The inclusion of historical data beyond either one day (standard MAP and weighted MAP) or two days (adaptive MAP) reduces predictive performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11095-020-02908-7) contains supplementary material, which is available to authorized users. Springer US 2020-08-23 2020 /pmc/articles/PMC7443423/ /pubmed/32830297 http://dx.doi.org/10.1007/s11095-020-02908-7 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Paper
Guo, Tingjie
van Hest, Reinier M.
Zwep, Laura B.
Roggeveen, Luca F.
Fleuren, Lucas M.
Bosman, Rob J.
van der Voort, Peter H. J.
Girbes, Armand R. J.
Mathot, Ron A. A.
Elbers, Paul W. G.
van Hasselt, Johan G. C.
Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title_full Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title_fullStr Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title_full_unstemmed Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title_short Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients
title_sort optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443423/
https://www.ncbi.nlm.nih.gov/pubmed/32830297
http://dx.doi.org/10.1007/s11095-020-02908-7
work_keys_str_mv AT guotingjie optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT vanhestreinierm optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT zweplaurab optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT roggeveenlucaf optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT fleurenlucasm optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT bosmanrobj optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT vandervoortpeterhj optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT girbesarmandrj optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT mathotronaa optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT elberspaulwg optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients
AT vanhasseltjohangc optimizingpredictiveperformanceofbayesianforecastingforvancomycinconcentrationinintensivecarepatients