Cargando…
Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443709/ https://www.ncbi.nlm.nih.gov/pubmed/32619479 http://dx.doi.org/10.1016/j.cub.2020.05.077 |
_version_ | 1783573678409121792 |
---|---|
author | Otto, Nils Pleijzier, Markus W. Morgan, Isabel C. Edmondson-Stait, Amelia J. Heinz, Konrad J. Stark, Ildiko Dempsey, Georgia Ito, Masayoshi Kapoor, Ishaan Hsu, Joseph Schlegel, Philipp M. Bates, Alexander S. Feng, Li Costa, Marta Ito, Kei Bock, Davi D. Rubin, Gerald M. Jefferis, Gregory S.X.E. Waddell, Scott |
author_facet | Otto, Nils Pleijzier, Markus W. Morgan, Isabel C. Edmondson-Stait, Amelia J. Heinz, Konrad J. Stark, Ildiko Dempsey, Georgia Ito, Masayoshi Kapoor, Ishaan Hsu, Joseph Schlegel, Philipp M. Bates, Alexander S. Feng, Li Costa, Marta Ito, Kei Bock, Davi D. Rubin, Gerald M. Jefferis, Gregory S.X.E. Waddell, Scott |
author_sort | Otto, Nils |
collection | PubMed |
description | Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the γ5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within γ5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-γ5 DAN subtype γ5(fb) receives direct recurrent feedback from γ5β′2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory interneurons or lateral horn neurons, which can also relay indirect feedback from MBONs. We similarly reconstructed the single aversively reinforcing PPL1-γ1pedc DAN. The γ1pedc DAN inputs mostly differ from those of γ5 DANs and they cluster onto distinct dendritic branches, presumably separating its established roles in aversive reinforcement and appetitive motivation [5, 6]. Tracing also identified neurons that provide broad input to γ5, β′2a, and γ1pedc DANs, suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal further complexity of dopaminergic reinforcement circuits between and within MB compartments. |
format | Online Article Text |
id | pubmed-7443709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-74437092020-08-28 Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila Otto, Nils Pleijzier, Markus W. Morgan, Isabel C. Edmondson-Stait, Amelia J. Heinz, Konrad J. Stark, Ildiko Dempsey, Georgia Ito, Masayoshi Kapoor, Ishaan Hsu, Joseph Schlegel, Philipp M. Bates, Alexander S. Feng, Li Costa, Marta Ito, Kei Bock, Davi D. Rubin, Gerald M. Jefferis, Gregory S.X.E. Waddell, Scott Curr Biol Article Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the γ5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within γ5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-γ5 DAN subtype γ5(fb) receives direct recurrent feedback from γ5β′2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory interneurons or lateral horn neurons, which can also relay indirect feedback from MBONs. We similarly reconstructed the single aversively reinforcing PPL1-γ1pedc DAN. The γ1pedc DAN inputs mostly differ from those of γ5 DANs and they cluster onto distinct dendritic branches, presumably separating its established roles in aversive reinforcement and appetitive motivation [5, 6]. Tracing also identified neurons that provide broad input to γ5, β′2a, and γ1pedc DANs, suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal further complexity of dopaminergic reinforcement circuits between and within MB compartments. Cell Press 2020-08-17 /pmc/articles/PMC7443709/ /pubmed/32619479 http://dx.doi.org/10.1016/j.cub.2020.05.077 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Otto, Nils Pleijzier, Markus W. Morgan, Isabel C. Edmondson-Stait, Amelia J. Heinz, Konrad J. Stark, Ildiko Dempsey, Georgia Ito, Masayoshi Kapoor, Ishaan Hsu, Joseph Schlegel, Philipp M. Bates, Alexander S. Feng, Li Costa, Marta Ito, Kei Bock, Davi D. Rubin, Gerald M. Jefferis, Gregory S.X.E. Waddell, Scott Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title | Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title_full | Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title_fullStr | Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title_full_unstemmed | Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title_short | Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila |
title_sort | input connectivity reveals additional heterogeneity of dopaminergic reinforcement in drosophila |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443709/ https://www.ncbi.nlm.nih.gov/pubmed/32619479 http://dx.doi.org/10.1016/j.cub.2020.05.077 |
work_keys_str_mv | AT ottonils inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT pleijziermarkusw inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT morganisabelc inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT edmondsonstaitameliaj inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT heinzkonradj inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT starkildiko inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT dempseygeorgia inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT itomasayoshi inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT kapoorishaan inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT hsujoseph inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT schlegelphilippm inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT batesalexanders inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT fengli inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT costamarta inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT itokei inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT bockdavid inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT rubingeraldm inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT jefferisgregorysxe inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila AT waddellscott inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila |