Cargando…

Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila

Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we...

Descripción completa

Detalles Bibliográficos
Autores principales: Otto, Nils, Pleijzier, Markus W., Morgan, Isabel C., Edmondson-Stait, Amelia J., Heinz, Konrad J., Stark, Ildiko, Dempsey, Georgia, Ito, Masayoshi, Kapoor, Ishaan, Hsu, Joseph, Schlegel, Philipp M., Bates, Alexander S., Feng, Li, Costa, Marta, Ito, Kei, Bock, Davi D., Rubin, Gerald M., Jefferis, Gregory S.X.E., Waddell, Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443709/
https://www.ncbi.nlm.nih.gov/pubmed/32619479
http://dx.doi.org/10.1016/j.cub.2020.05.077
_version_ 1783573678409121792
author Otto, Nils
Pleijzier, Markus W.
Morgan, Isabel C.
Edmondson-Stait, Amelia J.
Heinz, Konrad J.
Stark, Ildiko
Dempsey, Georgia
Ito, Masayoshi
Kapoor, Ishaan
Hsu, Joseph
Schlegel, Philipp M.
Bates, Alexander S.
Feng, Li
Costa, Marta
Ito, Kei
Bock, Davi D.
Rubin, Gerald M.
Jefferis, Gregory S.X.E.
Waddell, Scott
author_facet Otto, Nils
Pleijzier, Markus W.
Morgan, Isabel C.
Edmondson-Stait, Amelia J.
Heinz, Konrad J.
Stark, Ildiko
Dempsey, Georgia
Ito, Masayoshi
Kapoor, Ishaan
Hsu, Joseph
Schlegel, Philipp M.
Bates, Alexander S.
Feng, Li
Costa, Marta
Ito, Kei
Bock, Davi D.
Rubin, Gerald M.
Jefferis, Gregory S.X.E.
Waddell, Scott
author_sort Otto, Nils
collection PubMed
description Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the γ5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within γ5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-γ5 DAN subtype γ5(fb) receives direct recurrent feedback from γ5β′2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory interneurons or lateral horn neurons, which can also relay indirect feedback from MBONs. We similarly reconstructed the single aversively reinforcing PPL1-γ1pedc DAN. The γ1pedc DAN inputs mostly differ from those of γ5 DANs and they cluster onto distinct dendritic branches, presumably separating its established roles in aversive reinforcement and appetitive motivation [5, 6]. Tracing also identified neurons that provide broad input to γ5, β′2a, and γ1pedc DANs, suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal further complexity of dopaminergic reinforcement circuits between and within MB compartments.
format Online
Article
Text
id pubmed-7443709
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-74437092020-08-28 Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila Otto, Nils Pleijzier, Markus W. Morgan, Isabel C. Edmondson-Stait, Amelia J. Heinz, Konrad J. Stark, Ildiko Dempsey, Georgia Ito, Masayoshi Kapoor, Ishaan Hsu, Joseph Schlegel, Philipp M. Bates, Alexander S. Feng, Li Costa, Marta Ito, Kei Bock, Davi D. Rubin, Gerald M. Jefferis, Gregory S.X.E. Waddell, Scott Curr Biol Article Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the γ5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within γ5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-γ5 DAN subtype γ5(fb) receives direct recurrent feedback from γ5β′2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory interneurons or lateral horn neurons, which can also relay indirect feedback from MBONs. We similarly reconstructed the single aversively reinforcing PPL1-γ1pedc DAN. The γ1pedc DAN inputs mostly differ from those of γ5 DANs and they cluster onto distinct dendritic branches, presumably separating its established roles in aversive reinforcement and appetitive motivation [5, 6]. Tracing also identified neurons that provide broad input to γ5, β′2a, and γ1pedc DANs, suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal further complexity of dopaminergic reinforcement circuits between and within MB compartments. Cell Press 2020-08-17 /pmc/articles/PMC7443709/ /pubmed/32619479 http://dx.doi.org/10.1016/j.cub.2020.05.077 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Otto, Nils
Pleijzier, Markus W.
Morgan, Isabel C.
Edmondson-Stait, Amelia J.
Heinz, Konrad J.
Stark, Ildiko
Dempsey, Georgia
Ito, Masayoshi
Kapoor, Ishaan
Hsu, Joseph
Schlegel, Philipp M.
Bates, Alexander S.
Feng, Li
Costa, Marta
Ito, Kei
Bock, Davi D.
Rubin, Gerald M.
Jefferis, Gregory S.X.E.
Waddell, Scott
Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title_full Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title_fullStr Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title_full_unstemmed Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title_short Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila
title_sort input connectivity reveals additional heterogeneity of dopaminergic reinforcement in drosophila
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443709/
https://www.ncbi.nlm.nih.gov/pubmed/32619479
http://dx.doi.org/10.1016/j.cub.2020.05.077
work_keys_str_mv AT ottonils inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT pleijziermarkusw inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT morganisabelc inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT edmondsonstaitameliaj inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT heinzkonradj inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT starkildiko inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT dempseygeorgia inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT itomasayoshi inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT kapoorishaan inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT hsujoseph inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT schlegelphilippm inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT batesalexanders inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT fengli inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT costamarta inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT itokei inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT bockdavid inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT rubingeraldm inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT jefferisgregorysxe inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila
AT waddellscott inputconnectivityrevealsadditionalheterogeneityofdopaminergicreinforcementindrosophila