Cargando…
Eco-evolutionary control of pathogens
Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a payoff model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We ap...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443876/ https://www.ncbi.nlm.nih.gov/pubmed/32737164 http://dx.doi.org/10.1073/pnas.1920263117 |
_version_ | 1783573708591333376 |
---|---|
author | Lässig, Michael Mustonen, Ville |
author_facet | Lässig, Michael Mustonen, Ville |
author_sort | Lässig, Michael |
collection | PubMed |
description | Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a payoff model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody–antigen binding with a tunable dosage of antibodies. By analytical solution, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal control strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecasting affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory. |
format | Online Article Text |
id | pubmed-7443876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-74438762020-09-01 Eco-evolutionary control of pathogens Lässig, Michael Mustonen, Ville Proc Natl Acad Sci U S A Physical Sciences Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a payoff model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody–antigen binding with a tunable dosage of antibodies. By analytical solution, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal control strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecasting affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory. National Academy of Sciences 2020-08-18 2020-07-31 /pmc/articles/PMC7443876/ /pubmed/32737164 http://dx.doi.org/10.1073/pnas.1920263117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Lässig, Michael Mustonen, Ville Eco-evolutionary control of pathogens |
title | Eco-evolutionary control of pathogens |
title_full | Eco-evolutionary control of pathogens |
title_fullStr | Eco-evolutionary control of pathogens |
title_full_unstemmed | Eco-evolutionary control of pathogens |
title_short | Eco-evolutionary control of pathogens |
title_sort | eco-evolutionary control of pathogens |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443876/ https://www.ncbi.nlm.nih.gov/pubmed/32737164 http://dx.doi.org/10.1073/pnas.1920263117 |
work_keys_str_mv | AT lassigmichael ecoevolutionarycontrolofpathogens AT mustonenville ecoevolutionarycontrolofpathogens |