Cargando…

COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids

BACKGROUND: Significant progress has been made in cell replacement therapy for neural retinal diseases using retinal cells differentiated from human pluripotent stem cells. Low tumorigenicity and the ability to mature to form synaptic junctions make precursor cells a promising donor source. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Deng, Xia, Xi-Xi, Zhou, Heng, Jin, Si-Qian, Lu, Yang-Yan, Liu, Hui, Gao, Mei-Ling, Jin, Zi-Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444242/
https://www.ncbi.nlm.nih.gov/pubmed/32831148
http://dx.doi.org/10.1186/s13287-020-01883-5
Descripción
Sumario:BACKGROUND: Significant progress has been made in cell replacement therapy for neural retinal diseases using retinal cells differentiated from human pluripotent stem cells. Low tumorigenicity and the ability to mature to form synaptic junctions make precursor cells a promising donor source. Here, we attempted to improve the yield of photoreceptor precursor cells in three-dimensional retinal organoids from human embryonic stem cells (hESCs). METHODS: A CRX-tdTomato-tagged hESC line was generated to track retinal precursors in 3D retinal organoids. COCO, a multifunctional antagonist of the Wnt, TGF-β, and BMP pathways, was employed to 3D organoid differentiation schemes for enhanced photoreceptor precursor cells. Organoid fluorescence intensity measurement was used to monitor retinalization tendency with the number of precursors further checked by flow cytometry. Signature gene expression during organoid differentiation were assessed by qPCR and immunocytochemistry after COCO supplementation. RESULTS: CRX-positive cells can be spatiotemporally tracked by tdTomato without affecting retinalization during retinal organoid differentiation. Fluorescence intensity of organoids, which turned out highly consistent with flow cytometry measurement, allowed us to determine the differentiation efficiency of precursors during organoid culturing directly. Using COCO as an auxiliary supplement, rather than alone, can yield an increased number of photoreceptor precursors in the early stage of organoid differentiation. Over a longer time-frame, photoreceptor precursors enhanced their fate of cones and decreased fate of rods after treatment with COCO. CONCLUSIONS: Tracing with the CRX-reporter system showed that in retinal organoids derived from human pluripotent stem cells, COCO increased the differentiation efficiency of photoreceptor precursors and cones.