Cargando…
Long non-coding RNA Dlx6os1 serves as a potential treatment target for diabetic nephropathy via regulation of apoptosis and inflammation
The present study investigated the effect of long non-coding RNA (lncRNA) Dlx6os1 silencing on cell proliferation, apoptosis and fibrosis, and further explored its influence on the mRNA expression profile in mouse mesangial cells (MMCs) of a diabetic nephropathy (DN) cellular model. A DN cellular mo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444328/ https://www.ncbi.nlm.nih.gov/pubmed/32855728 http://dx.doi.org/10.3892/etm.2020.9112 |
Sumario: | The present study investigated the effect of long non-coding RNA (lncRNA) Dlx6os1 silencing on cell proliferation, apoptosis and fibrosis, and further explored its influence on the mRNA expression profile in mouse mesangial cells (MMCs) of a diabetic nephropathy (DN) cellular model. A DN cellular model was constructed in SV40 MES13 MMCs under high glucose conditions (30 mmol/l glucose culture). lncRNA Dlx6os1 short hairpin (sh)RNA plasmids and negative control (NC) shRNA plasmids were transfected into the MMCs of the DN cellular model as the sh-lncRNA group and sh-NC group respectively. The mRNA expression profile was determined in the sh-lncRNA and sh-NC groups. Compared with the sh-NC group, the cell proliferation, mRNA and protein expression levels of proliferative markers (cyclin D1 and proliferating cell nuclear antigen) as well as fibrosis markers (fibronectin and collagen I) were suppressed, whereas cell apoptosis was promoted in the sh-lncRNA group. The mRNA expression profile identified 423 upregulated mRNAs and 438 downregulated mRNAs in the sh-lncRNA group compared with the sh-NC group. Additionally, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed mRNAs were enriched in apoptosis and inflammation-related pathways. Further gene-set enrichment analysis of apoptosis and inflammation revealed that lncRNA Dlx6os1 inhibition promoted apoptosis and suppressed inflammation in MMCs of the DN cellular model. In conclusion, lncRNA Dlx6os1 may serve as a potential treatment target for DN via regulation of multiple apoptosis- and inflammation-related pathways. |
---|