Cargando…
Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions
In the paper, by virtue of the binomial inversion formula, a general formula of higher order derivatives for a ratio of two differentiable function, and other techniques, the authors compute several sums in terms of the beta function and its partial derivatives, polygamma functions, the Gauss hyperg...
Autores principales: | Qi, Feng, Huang, Chuan-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444454/ https://www.ncbi.nlm.nih.gov/pubmed/32863811 http://dx.doi.org/10.1007/s13398-020-00927-y |
Ejemplares similares
-
Gauss and Jacobi sums
por: Berndt, Bruce C, et al.
Publicado: (1998) -
Gauss sums, Kloosterman sums, and monodromy groups (AM-116)
por: Katz, Nicholas M
Publicado: (1988) -
The polygamma function and the derivatives of the cotangent function for rational arguments
por: Kölbig, Kurt Siegfried
Publicado: (1996) -
Gauss sums and p-adic division algebras
por: Bushnell, Colin J, et al.
Publicado: (1983) -
Some monotonicity properties and inequalities for the generalized digamma and polygamma functions
por: Yin, Li, et al.
Publicado: (2018)