Cargando…
Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development
Microglial cells play a key role in brain homeostasis from development to adulthood. Here we show the involvement of a site-specific phosphorylation of Presenilin 1 (PS1) in microglial development. Profiles of microglia-specific transcripts in different temporal stages of development, combined with...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444478/ https://www.ncbi.nlm.nih.gov/pubmed/32822378 http://dx.doi.org/10.1371/journal.pone.0237773 |
_version_ | 1783573812793573376 |
---|---|
author | Ledo, Jose Henrique Zhang, Ran Mesin, Luka Mourão-Sá, Diego Azevedo, Estefania P. Troyanskaya, Olga G. Bustos, Victor Greengard, Paul |
author_facet | Ledo, Jose Henrique Zhang, Ran Mesin, Luka Mourão-Sá, Diego Azevedo, Estefania P. Troyanskaya, Olga G. Bustos, Victor Greengard, Paul |
author_sort | Ledo, Jose Henrique |
collection | PubMed |
description | Microglial cells play a key role in brain homeostasis from development to adulthood. Here we show the involvement of a site-specific phosphorylation of Presenilin 1 (PS1) in microglial development. Profiles of microglia-specific transcripts in different temporal stages of development, combined with multiple systematic transcriptomic analysis and quantitative determination of microglia progenitors, indicate that the phosphorylation of PS1 at serine 367 is involved in the temporal dynamics of microglial development, specifically in the developing brain rudiment during embryonic microgliogenesis. We constructed a developing brain-specific microglial network to identify transcription factors linked to PS1 during development. Our data showed that PS1 functional connections appear through interaction hubs at Pu.1, Irf8 and Rela-p65 transcription factors. Finally, we showed that the total number of microglia progenitors was markedly reduced in the developing brain rudiment of embryos lacking PS1 phosphorylation compared to WT. Our work identifies a novel role for PS1 in microglial development. |
format | Online Article Text |
id | pubmed-7444478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74444782020-08-27 Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development Ledo, Jose Henrique Zhang, Ran Mesin, Luka Mourão-Sá, Diego Azevedo, Estefania P. Troyanskaya, Olga G. Bustos, Victor Greengard, Paul PLoS One Research Article Microglial cells play a key role in brain homeostasis from development to adulthood. Here we show the involvement of a site-specific phosphorylation of Presenilin 1 (PS1) in microglial development. Profiles of microglia-specific transcripts in different temporal stages of development, combined with multiple systematic transcriptomic analysis and quantitative determination of microglia progenitors, indicate that the phosphorylation of PS1 at serine 367 is involved in the temporal dynamics of microglial development, specifically in the developing brain rudiment during embryonic microgliogenesis. We constructed a developing brain-specific microglial network to identify transcription factors linked to PS1 during development. Our data showed that PS1 functional connections appear through interaction hubs at Pu.1, Irf8 and Rela-p65 transcription factors. Finally, we showed that the total number of microglia progenitors was markedly reduced in the developing brain rudiment of embryos lacking PS1 phosphorylation compared to WT. Our work identifies a novel role for PS1 in microglial development. Public Library of Science 2020-08-21 /pmc/articles/PMC7444478/ /pubmed/32822378 http://dx.doi.org/10.1371/journal.pone.0237773 Text en © 2020 Ledo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ledo, Jose Henrique Zhang, Ran Mesin, Luka Mourão-Sá, Diego Azevedo, Estefania P. Troyanskaya, Olga G. Bustos, Victor Greengard, Paul Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title | Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title_full | Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title_fullStr | Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title_full_unstemmed | Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title_short | Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development |
title_sort | lack of a site-specific phosphorylation of presenilin 1 disrupts microglial gene networks and progenitors during development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444478/ https://www.ncbi.nlm.nih.gov/pubmed/32822378 http://dx.doi.org/10.1371/journal.pone.0237773 |
work_keys_str_mv | AT ledojosehenrique lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT zhangran lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT mesinluka lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT mouraosadiego lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT azevedoestefaniap lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT troyanskayaolgag lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT bustosvictor lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment AT greengardpaul lackofasitespecificphosphorylationofpresenilin1disruptsmicroglialgenenetworksandprogenitorsduringdevelopment |