Cargando…

The frequent complete subgraphs in the human connectome

While it is still not possible to describe the neuronal-level connections of the human brain, we can map the human connectome with several hundred vertices, by the application of diffusion-MRI based techniques. In these graphs, the nodes correspond to anatomically identified gray matter areas of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Fellner, Máté, Varga, Bálint, Grolmusz, Vince
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444532/
https://www.ncbi.nlm.nih.gov/pubmed/32817642
http://dx.doi.org/10.1371/journal.pone.0236883
Descripción
Sumario:While it is still not possible to describe the neuronal-level connections of the human brain, we can map the human connectome with several hundred vertices, by the application of diffusion-MRI based techniques. In these graphs, the nodes correspond to anatomically identified gray matter areas of the brain, while the edges correspond to the axonal fibers, connecting these areas. In our previous contributions, we have described numerous graph-theoretical phenomena of the human connectomes. Here we map the frequent complete subgraphs of the human brain networks: in these subgraphs, every pair of vertices is connected by an edge. We also examine sex differences in the results. The mapping of the frequent subgraphs gives robust substructures in the graph: if a subgraph is present in the 80% of the graphs, then, most probably, it could not be an artifact of the measurement or the data processing workflow. We list here the frequent complete subgraphs of the human braingraphs of 413 subjects (238 women and 175 men), each with 463 nodes, with a frequency threshold of 80%, and identify 812 complete subgraphs, which are more frequent in male and 224 complete subgraphs, which are more frequent in female connectomes.