Cargando…
Using machine learning for predicting cervical cancer from Swedish electronic health records by mining hierarchical representations
Electronic health records (EHRs) contain rich documentation regarding disease symptoms and progression, but EHR data is challenging to use for diagnosis prediction due to its high dimensionality, relative scarcity, and substantial level of noise. We investigated how to best represent EHR data for pr...
Autores principales: | Weegar, Rebecka, Sundström, Karin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444577/ https://www.ncbi.nlm.nih.gov/pubmed/32822401 http://dx.doi.org/10.1371/journal.pone.0237911 |
Ejemplares similares
-
Applying natural language processing to electronic medical records for estimating healthy life expectancy
por: Weegar, Rebecka
Publicado: (2021) -
Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches
por: Weegar, Rebecka, et al.
Publicado: (2019) -
Predicting Hospital Readmission for Campylobacteriosis from Electronic Health Records: A Machine Learning and Text Mining Perspective
por: Zhou, Shang-Ming, et al.
Publicado: (2022) -
Representation learning for clinical time series prediction tasks in electronic health records
por: Ruan, Tong, et al.
Publicado: (2019) -
Data Mining in Spine Surgery: Leveraging Electronic Health Records for Machine Learning and Clinical Research
por: Staartjes, Victor E., et al.
Publicado: (2019)