Cargando…

CYP2C19 genotype-guided antiplatelet therapy: promises and pitfalls

Pharmacogenetic variants can alter the mechanism of action (pharmacodynamic gene variants) or kinetic processes such as absorption, distribution, metabolism and elimination (pharmacokinetic gene variants). Many initial successes in precision medicine occurred in the context of genes encoding the cyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellithi, Moataz, Baye, Jordan, Wilke, Russell A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Medicine Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444625/
https://www.ncbi.nlm.nih.gov/pubmed/32723143
http://dx.doi.org/10.2217/pgs-2020-0046
Descripción
Sumario:Pharmacogenetic variants can alter the mechanism of action (pharmacodynamic gene variants) or kinetic processes such as absorption, distribution, metabolism and elimination (pharmacokinetic gene variants). Many initial successes in precision medicine occurred in the context of genes encoding the cytochromes P450 (CYP enzymes). CYP2C19 activates the antiplatelet drug clopidogrel, and polymorphisms in the CYP2C19 gene are known to alter the outcome for patients taking clopidogrel in the context of cardiovascular disease. CYP2C19 loss-of-function alleles are specifically associated with increased risk for coronary stent thrombosis and major adverse cardiovascular events in patients taking clopidogrel following percutaneous coronary intervention. We explore successes and challenges encountered as the clinical and scientific communities advance CYP2C19 genotyping in the context of routine patient care.