Cargando…
The myth of generalisability in clinical research and machine learning in health care
An emphasis on overly broad notions of generalisability as it pertains to applications of machine learning in health care can overlook situations in which machine learning might provide clinical utility. We believe that this narrow focus on generalisability should be replaced with wider consideratio...
Autores principales: | Futoma, Joseph, Simons, Morgan, Panch, Trishan, Doshi-Velez, Finale, Celi, Leo Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444947/ https://www.ncbi.nlm.nih.gov/pubmed/32864600 http://dx.doi.org/10.1016/S2589-7500(20)30186-2 |
Ejemplares similares
-
Artificial intelligence, machine learning and health systems
por: Panch, Trishan, et al.
Publicado: (2018) -
Generalization in Clinical Prediction Models: The Blessing and Curse of Measurement Indicator Variables
por: Futoma, Joseph, et al.
Publicado: (2021) -
Artificial intelligence and algorithmic bias: implications for health systems
por: Panch, Trishan, et al.
Publicado: (2019) -
The “inconvenient truth” about AI in healthcare
por: Panch, Trishan, et al.
Publicado: (2019) -
“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
por: Panch, Trishan, et al.
Publicado: (2020)