Cargando…
Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation
The development of novel digital auscultation techniques has become highly significant in the context of the outburst of the pandemic COVID 19. The present work reports the spectral, nonlinear time series, fractal, and complexity analysis of vesicular (VB) and bronchial (BB) breath signals. The anal...
Autores principales: | Raj, Vimal, Renjini, A., Swapna, M.S., Sreejyothi, S., Sankararaman, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444955/ https://www.ncbi.nlm.nih.gov/pubmed/32863618 http://dx.doi.org/10.1016/j.chaos.2020.110246 |
Ejemplares similares
-
Time series and fractal analyses of wheezing: a novel approach
por: Swapna, M. S., et al.
Publicado: (2020) -
Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach
por: Sreejyothi, Sankararaman, et al.
Publicado: (2021) -
Is SARS CoV-2 a Multifractal?—Unveiling the Fractality and Fractal Structure
por: Swapna, M. S., et al.
Publicado: (2021) -
Acclimatization through thermal diffusivity tuning of coconut oil – A mode mismatched dual-beam thermal lens study
por: Raj, Vimal, et al.
Publicado: (2022) -
Nonlinear principal component analysis and its applications
por: Mori, Yuichi, et al.
Publicado: (2016)