Cargando…
Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats
Schisandrin, an active component extracted from Schisandra chinensis (Turcz.) Baill has been reported to alleviate the cognitive impairment in neurodegenerative disorder like Alzheimer’s disease (AD). However, the mechanism by which schisandrin regulates the cognitive decline is still unclear. In ou...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Association for Laboratory Animal Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445059/ https://www.ncbi.nlm.nih.gov/pubmed/32336744 http://dx.doi.org/10.1538/expanim.19-0146 |
_version_ | 1783573914092306432 |
---|---|
author | Song, Lin Piao, Zhongyuan Yao, Lifen Zhang, Limei Lu, Yichan |
author_facet | Song, Lin Piao, Zhongyuan Yao, Lifen Zhang, Limei Lu, Yichan |
author_sort | Song, Lin |
collection | PubMed |
description | Schisandrin, an active component extracted from Schisandra chinensis (Turcz.) Baill has been reported to alleviate the cognitive impairment in neurodegenerative disorder like Alzheimer’s disease (AD). However, the mechanism by which schisandrin regulates the cognitive decline is still unclear. In our study, intracerebroventricular injection of streptozotocin (STZ) was employed to establish AD model in male Wistar rats, and indicated dose of schisandrin was further administered. The Morris water maze test was performed to evaluate the ability of learning and memory in rats with schisandrin treatment. The results indicated that schisandrin improved the capacity of cognition in STZ-induced rats. The contents of pro-inflammatory cytokines in brain tissue were determined by ELISA, and the expressions of these cytokines were assessed by western-blot and immunohistochemistry. The results showed that treatment of schisandrin significantly reduced the production of inflammation mediators including tumor necrosis factor-α, interleukin-1β and interleukin-6. Further study suggested a remarkable decrease in the expressions of ER stress maker proteins like C/EBP-homologous protein, glucose-regulated protein 78 and cleaved caspase-12 in the presence of schisandrin, meanwhile the up-regulation of sirtuin 1 (SIRT1) was also observed in the same group. Additionally, the results of western-blot and EMSA demonstrated that schisandrin inhibited NF-κB signaling in the brain of STZ-induced rats. In conclusion, schisandrin ameliorated STZ-induced cognitive dysfunction, ER stress and neuroinflammation which may be associated with up-regulation of SIRT1. Our study provides novel mechanisms for the neuroprotective effect of schisandrin in AD treatment. |
format | Online Article Text |
id | pubmed-7445059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Japanese Association for Laboratory Animal Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74450592020-08-27 Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats Song, Lin Piao, Zhongyuan Yao, Lifen Zhang, Limei Lu, Yichan Exp Anim Original Schisandrin, an active component extracted from Schisandra chinensis (Turcz.) Baill has been reported to alleviate the cognitive impairment in neurodegenerative disorder like Alzheimer’s disease (AD). However, the mechanism by which schisandrin regulates the cognitive decline is still unclear. In our study, intracerebroventricular injection of streptozotocin (STZ) was employed to establish AD model in male Wistar rats, and indicated dose of schisandrin was further administered. The Morris water maze test was performed to evaluate the ability of learning and memory in rats with schisandrin treatment. The results indicated that schisandrin improved the capacity of cognition in STZ-induced rats. The contents of pro-inflammatory cytokines in brain tissue were determined by ELISA, and the expressions of these cytokines were assessed by western-blot and immunohistochemistry. The results showed that treatment of schisandrin significantly reduced the production of inflammation mediators including tumor necrosis factor-α, interleukin-1β and interleukin-6. Further study suggested a remarkable decrease in the expressions of ER stress maker proteins like C/EBP-homologous protein, glucose-regulated protein 78 and cleaved caspase-12 in the presence of schisandrin, meanwhile the up-regulation of sirtuin 1 (SIRT1) was also observed in the same group. Additionally, the results of western-blot and EMSA demonstrated that schisandrin inhibited NF-κB signaling in the brain of STZ-induced rats. In conclusion, schisandrin ameliorated STZ-induced cognitive dysfunction, ER stress and neuroinflammation which may be associated with up-regulation of SIRT1. Our study provides novel mechanisms for the neuroprotective effect of schisandrin in AD treatment. Japanese Association for Laboratory Animal Science 2020-04-24 2020 /pmc/articles/PMC7445059/ /pubmed/32336744 http://dx.doi.org/10.1538/expanim.19-0146 Text en ©2020 Japanese Association for Laboratory Animal Science This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Song, Lin Piao, Zhongyuan Yao, Lifen Zhang, Limei Lu, Yichan Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title | Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title_full | Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title_fullStr | Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title_full_unstemmed | Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title_short | Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats |
title_sort | schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and
neuroinflammation in streptozotocin (stz)-induced alzheimer’s disease rats |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445059/ https://www.ncbi.nlm.nih.gov/pubmed/32336744 http://dx.doi.org/10.1538/expanim.19-0146 |
work_keys_str_mv | AT songlin schisandrinamelioratescognitivedeficitsendoplasmicreticulumstressandneuroinflammationinstreptozotocinstzinducedalzheimersdiseaserats AT piaozhongyuan schisandrinamelioratescognitivedeficitsendoplasmicreticulumstressandneuroinflammationinstreptozotocinstzinducedalzheimersdiseaserats AT yaolifen schisandrinamelioratescognitivedeficitsendoplasmicreticulumstressandneuroinflammationinstreptozotocinstzinducedalzheimersdiseaserats AT zhanglimei schisandrinamelioratescognitivedeficitsendoplasmicreticulumstressandneuroinflammationinstreptozotocinstzinducedalzheimersdiseaserats AT luyichan schisandrinamelioratescognitivedeficitsendoplasmicreticulumstressandneuroinflammationinstreptozotocinstzinducedalzheimersdiseaserats |