Cargando…
Multiomics data integration unveils core transcriptional regulatory networks governing cell-type identity
A plethora of computational approaches have been proposed for reconstructing gene regulatory networks (GRNs) from gene expression data. However, gene regulatory processes are often too complex to predict from the transcriptome alone. Here, we present a computational method, Moni, that systematically...
Autores principales: | Jung, Sascha, del Sol, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445234/ https://www.ncbi.nlm.nih.gov/pubmed/32839455 http://dx.doi.org/10.1038/s41540-020-00148-4 |
Ejemplares similares
-
A general computational approach to predicting synergistic transcriptional cores that determine cell subpopulation identities
por: Okawa, Satoshi, et al.
Publicado: (2019) -
Multiomics Evaluation of Gastrointestinal and Other Clinical Characteristics of COVID-19
por: Du, Mulong, et al.
Publicado: (2020) -
Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic β Cell Identity and Function
por: Lawlor, Nathan, et al.
Publicado: (2019) -
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
por: Fontemaggi, Giulia, et al.
Publicado: (2015) -
Temporal ordering of omics and multiomic events inferred from time-series data
por: Kaur, Sandeep, et al.
Publicado: (2020)